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6-1 REACTOR THEORY

BY
John W. Weilt

The principal object of reactor theory is to provide useful techniques which will
give an accurate description of the spatial and energy distributions of neutrons within
a chain-reacting system. In a system operating in the steady state it is required that
for a given source of neutrons born in fission the slowing down and eventual capture
or loss of these neutrons shall be correctly described. The resulting distribution of
fissions induced by these neutron captures must agree both in strength and in dis-
tribution with the given source. Only if this condition is satisfied will the reactor be
critical and operating in an equilibrium condition.

In order to be of use to engineers, reactor theory must obtain this correct deseription
of the neutron distribution for reactor geometries of engineering interest and must
include a realistic representation of the complex nuclear cross sections of the materials
of which the system is composed. It often turns out, however, that these practical
considerations prevent the accurate mathematical descriptions from being brought
to a solution with any reasonable amount of effort. Consequently, the subject of
reactor theory is largely composed of metheds which may be used to obtain approxi-
mate solutions to a detailed problem for various special cases 'of engineering interest.
This chapter is devoted, then, to a discussion of these approximations and their
validity in order to present an over-all viewpoint to the nuclear engineer. Detailed
mathematical treatment is left to the references,

In choosing among the various available methods, one should consider several
specific questions:

Is it possible to use some rough but convenient approximation to provide a general
idea of the situation? This often allows effort in other areas to proceed and, in addi-
tion, allows for a more effective concentration of refined calculation in the areas of
most importance. :

Are neutrons of all energies equally important to the behavior of the chain-reacting
system, or are certain neutron energies of particular importance? In this latter
case perhaps a treatment of a limited number of neutron energies will suffice and will
help to reduce the mathematical complexity.

Is the majority of the reactor volume distant from boundaries by a mean free path
or more? If so, certain valuable simplifications can be made in the form of the equa-
tions to be used.

Or, in the other extreme, is the reactor composed of a structure so fine that all
detailed description can be neglected? It may then be possible to treat the entire
medium as homogeneous if suitable care is exercised in formulating the equivalent
homogeneous material.

Will the system behavior be sensitive to details of geometrical shape? If it will
not, then simplified geometries may be used for calculation with great reduction in the
effort because of a reduction in the number of dimensions to be handled or bécause of
the occurrence of simpler mathematical functions. .

Are important variations in composition of the system of a gradual nature? It
may be entirely satisfactory to represent these variations by choosing several regions
of uniform composition and connecting them with appropriate boundary conditions.

t The assistance of Drs. J. Sampson and T. M. Snyder in the preparation of portions of this material
is gratefully acknowledged. The material was reviewed by Drs. P, Zweifel and T. M. Snyder.
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Great reduction in over-all calculational effort can be achieved with little reduction
in accuracy by judicious selection of approximate methods. However, cases will
occur where very few approximations can be made with accuracy, and the system
will, in the end, have to be studied in an experimental mock-up or critical experiment
in order to establish sufficient confidence in the prediction of final system performance.

1 NEUTRON TRANSPORT

The study of the physical processes which may occur to & neutron in a system com-
posed of scattering and absorbing materials is called neutron transport. In neutron
transport no attempt is made to obtain a chain reaction or, for that matter, to treat
any other processes except those which cause a change in the space or energy coordi-
nates of the neutron. The combination of neutron transport with other physical
phertomena to form a power-producing, chain-reacting system is treated in Art. 5.

1.1 The Boltzmann Equation

It is possible to derive an equation which rigorously describes the behavior of
neutrons in any scattering or slowing-down material. This equation is based on the
fundamental physical principle of neutron conservation within a closed system.

Consider the vector neutron flux

$(,Q,1)

whigh is a vector whose magnitude ¢ is the number of neutrons of speed v which in
one second cross a unit of area perpendicular to the vector direction Q at the position
given by the vector r.

The equation for the conservation of neutrons is, then, composed of terms which
represent the various possible sources and sinks in a system. The net number of
neutrons leaving a unit volume per unit time in the speed interval dv and the direction
interval dQ is

V. $@,Q,r) dv dQ

The number of neutrons removed from this unit volume and this speed interval and
direction interval by all forms of interaction with other nuclei, including slowing-down,
is )

No () ¢(v,Q,r) dv dQ

where N = atomic density of the medium, atoms/cm?
o(v) = cross section for all removal interactions, em?/atom (For an isotropic
medium with no crystal effcets this is independent of Q)
The number of neutrons introduced into the unit volume and into this speed and
direction interval by slowing-down collisions involving a change in speed v and/or a
change in direction £ will be equal to the number of these collisions integrated over all
possible original speeds and directions. This source is, then,

v de f f o(v',Q 1) No (o, 2,2") do’ de’
v Qf

where the primed quantities represent the speed and direction of the neutron before
the interaction and where the quantity ¢.(v,0',Q,2’) is a form of differential cross
section and is a function of the initial and final speeds and of the difference between
the initial and final directions, although not of either direction separately in an iso-
tropic medium.

Finally, the source of neutrons introduced into the unit volume and into this
velocity interval by external means is taken to be

S(v,Q,r) dv dQ

This term can be used to represent neutrons born in fission or introduced by some
external means.
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Clearly if the rate of change of neutrons within the unit volume and this velocity
(speed and direction) interval is to be zero (that is, the system is in steady state),
then the number of neutrons entering the unit volume and this velocity interval must
equal the number of neutrons leaving the same volume and velocity interval. Equat-
ing these two quantities yields

v ¢(”,Q;f) + NU(U)¢(7))er) = S(U,Q,r) + ﬂ ¢(v’,ﬂ’,r)Na,(v,v',Q,Q') dv’ dQ’
v’

This is the steady-state Boltzmann equation and is the basic equation governing
the behavior of neutrons in a system containing arbitrary scattering and absorbing
materials.” To be completely general the atomic density and the cross sections must
be considered to be functions of position, but it will suffice to treat the case for a
uniform medium.

If all the cross sections and sources involved were known experimentally, and if the
equation could be solved, a rigorous description of the neutron flux would result.
Unfortunately, the Boltzmann equation is an integrodifferential equation involving
source and cross section functions of an arbitrary nature. As a consequence, it
cannot be solved exactly for any but a few highly restricted cases. For most engineer-
ing purposes, approximations to this equation or approximate reformulations of it
are of most use. To obtain equations of manageable difficulty it is usually necessary
to make approximations as to both the space-wise and the energy-wise behavior of
the neutrons. Below are treated briefly a number of such approximations to the
Boltzmann equation which have been of use in practical problems.

1.2 The Space-independent Integral Equation

For cases where the neutron distribution is space independent or where the flux is
slowly varying, it is possible to make a reduction in the complexity of the Boltzmann
equation. For a region of constant flux the divergence term is zero. Then integrat-
ing over the various directions of the velocity vector yields

No(w)o) = S0) + [, [ // (0,2 Nou(0,02,9") d dg'] a
Qo'

This space-independent Boltzmann equation is then rearranged into an equation for
the collision density y. The collision density is equal to the neutron flux times the
total probability of a collision (the eross section). Consequently, the space-inde-
pendent equation can be made to take the form of an integral equation (in the energy
variable E instead of the speed v)
4
) = [, 70 g am + s

213 (E )
where the kernel ¢(E,E’) is now the probability that a neutron of energy E’ will be
slowed down to energy E as the result of a scattering collision which it undergoes with
probability o.(E’).

Solutions of this equation depend upon the choice of the kernel g(E,E’). Because
this kernel will have energy cutoffs for most elements (that is, a neutron can lose
only a fixed maximum fraction of its incident energy upon collision with an atom of
mass greater than the neutron mass) both limits of the integral will become functions
of the energy E. This situation does not lead to a form of the equation convenient for
solution. Thus, the variable limit on the integral is usually avoided by using one of a
number of synthetic kernels. These kernels do not give an exact description of the
slowing-down process but are approximate functions which do not differ greatly from
the correct function and which will yield a convenient reduction of the integral.
A discussion of these synthetic kernels is included in several references.* 1

T Superscript numbers refer to References at end of subsection,
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1.3 The Hydrogen Equation

For the case of hydrogen a neutron may lose all its energy in one collision. The
slowing-down kernel may be shown to have the form

(BB _-;j, $E<E
-0 HESE

and only the lower limit on the integral is a function of the energy E. Consequently,
the integral equation reduces directly to the differential equation

dy (B} | o(E) ¢(E) _dS (B)
dE ' o(E) E dE

which may be solved explicitly. The solution is

s E oo (B 1
Y(E) = Nou(E)¢p(E) = = / ((g,) S(E’) exp [ /E %] ar’ + S(E)

=0

1.4 The One-velocity Boltzmann Equation

Let us return now to the original Boltzmann equation (see Art. 1.1) and seek methods
of solution which do not require the assumption of a space-independent neutron distri-
bution. Quite obviously there will be many engineering cases where such an approxi-
mation will be useless. However, there are often cases where the energy dependence of
the neutron flux can be neglected. In these cases the Boltzmann equation reduces
1mmedmtely to

V- 6(,Q) + Noo(r,Q) = / Now(@,2)6(5,9)) dQ' + 8(,Q)

This equation forms the basis for a great many engineering calculations and is of
particular value in treating the distribution of thermal neutrons in a reactor.

The most common method for treating this equation is the spherical harmonics
method which is discussed in Art. 2. The principal result of such treatment is the
approximate reduction of this mtevrodlﬁerentlal equation to a differential equation
called the diffusion equation:

DV (1) — Noao(r) + S(r) =

where D is the diffusion constant, a property of the medium. This equation can be
solved explicitly for a number of cases of particular interest. It can also be shown
that this equation yields solutions which are the asymptotic solutions of the one-
veiocity Boltzmann equation at points distant from boundaries and in low-absorption
media. For this reason it forms the basis for many special methods discussed later
on and has been used extensively for obtaining a first, reasonable estimate of the
characteristics of many engineering systems.

A special form of the one-velocity Boltzmann equation can be obtained from con-
sideration of the collision density y, which was discussed earlier in connection with the
integral form of the space-independent equation. If ¢ is the collision density and the
kernel K(Jr — r’|) is defined as the probability that a neutron which starts at r’ will
have its first collision at r, then the number of neutrons per unit volume which will
have their first collision at r is given by

va(r) = / SEK (e — ']) dr’

where S(r’) is an 1sotrop1c source which may vary with position and where the kernel
is given by
4]

]——_"- g—otr—r’i
4rlr — r'}?

K(r -1 =
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K(Jr — 1'|) is the product of the inverse-square-law attenuation which is characteristic
of a point source times the exponentialsprobability that the neutron will arrive at the
point r, having traveled the path length [t — 1’| without having a collision, times the
probability of its having a collision at r. The latter is simply the total collision cross
section at r. If all scattering and absorption events are now regarded as absorptions,
with 1 4 f neutrons being emitted as the result of the absorption, then all collisions
can be regarded as first collisions. By definition

os(r) -+ vos(r)
Ot (T)

where » is the number of neutrons emitted per fission. The equation for the collision
density then becomes (where all collisions are regarded as first collisions)

1+76) =

w0 = [, K~ rDIS@) + 1L+ 7)) d

This is the integral formulation of the one-velocity Boltzmann equation. Note,
however, that in the conversion of all collisions to first collisions the correlation
between incident and scattered neutron directions has been lost. To this extent,
this equation is less general than the integrodifferential formulation of the one-velocity
Boltzmann equation.

Integration of the point kernel K(jr — r'l) over various geometries results in the
derivation of simpler forms of kernels for use in restricted geometries. The forms of
the line, plane, and cylindrical and spherical shell kernels are given in Art. 2.25 of
See. 6-2 and in Refs. 2.

1.6 The Fermi Age Equation

Let us examine now several techniques for obtaining approximate solutions to the
Boltzmann equation where both space and energy variations in the neutron flux
must be treated. Of these methods the simplest, and perhaps most direct, is the
Fermi age technique. The age equation is based upon the continuous slowing-down
model, which states that in each collision with a moderating atom a neutron loses an
amount of energy characterized by the mean logarithmic energy decrement

o A-1r A1
f=l4——r— i

and that for sufficiently heavy nuclei (where A is sufficiently large), the slowing down
of the neutron can be approximated by a continuous history with a parameter &.
This picture holds only very roughly for light elements where a reutron may lose a
large amount of energy in one collision. For heavier elements the continuous slow-
ing-down model is, however, very satisfactory. One important result of the con-
tinuous slowing-down model is the identification of the slowing-down density

Q(r:E) = EN(T;d)(I',E)

which is the number of neutrons slowing down below a given energy E per unit time
per unit volume,
The diffusion equation, including a slowing-down source, is written

D v (r,E) — Noad(r,E) + i’%;?ﬂ-) + 8@,E) =0

Introducing the continuous slowing-down model and defining the Fermi age

=/E° D dE'
E tNo, E
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the age equation with absorption results:

vig (gr) — D% gy — 2O Ly =0
D or

If the resonance escape probability is defined as

, [E 4, dE")
P(E,E') = exp (— fE W T
then the redefinition of the slowing-down density as

g = p(EE)q

gives immediately the result that
’ g (,7) )
Vi () — 22 4 8irg) =0
¢ (1,7) P +p(E,E") {r,7)
This shows that the solution with absorption, upon proper treatime! b
source term, is simply the solution of the Fermi age equation wit a56S
multiplied by the resonance escape probability. Finally, since many cer ene
have a source term only at high energy and are source-free at all 1owel
equation reduces simply to the most familiar form of the age equation:

of the external
tment out absorption
of interest
rgies, the

. qu (r’T) — m =

o d. The
The similarity of this equation to that for the diffusion of heat should Eﬁigoizeis called
quantity = plays the role of time in the heat equation. Because of o variable but
the “Fermi age”” in the present application. It is, however, not 2 T sixth of the
rather has the units of length squared. It can be identified with on® mean square
second moment of the neutron distribution and is thus one-sixth of the

distance traveled by the neutron in being slowed down to energy £

1.6 The Selengut-Goertzel Equation . b
. . iven

A very useful approximate solution to the Boltzmann equation hai zfiinggdown ii
Selengut and Goertzel.! Recognizing the basic difference between S0 o treated the
hydrogen and slowing down in all other materials, these authors hav is an exten-
processes separately. The Selengut-Goertzel equation, in its usu‘a1 f.oriél{le to slowing
sion of the diffusion equation in which that part of the source which 18 ‘< treated with
down in hydrogen is treated exactly while the remainder of the Sourc; lﬂec tion of the
the continuous slowing-down model. Any correlation between the de ogen atom is
neutron and the degradation resulting from a collision with a hyd”

ignored. The resulting equation has the form ‘

Dv?*¢ (1,E) — (Nuoem + Noo)(r,E) + 8(1,E)

3q (r,B) * p(r,B)Naos(E')
+ S [E (1, .

dE’
=0
E/

. ration into a
The Selengut-Goertzel equation may be solved numerically by lncorpotl: tbe reason-
maultigroup formulation or by other numerical methods. 1t has P rovet the hydrogen
ably convenient for a number of different kinds of problems. Note tha
scattering Nmo,n appears added to the absorption Noa. . ating hydrogen
This method, while clearly approximate, nevertheless avoids treqimation incor-
by continuous slowing-down theory and thus avoids the major appro’ ethod has met
porated in the otherwise useful age theory. The Selengut‘Goe}‘tZ_el n;f processes of
with surprising (and perhaps fortuitous) success in the description O ich are much
several types in water-moderated systems. More exact methods, W
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more tedious, sometimes give results which agree less well with experiment than does
the Selengut-Goertzel method. For thisreason the Selengut-Goertzel method occupies
a special position because of its unexpected accuracy.

1.7 The Multigroup Equations

Another very useful approach to the energy- and space-variation problem is obtained
by approximating the continuous neutron energy spectrum by a finite number of
energy groups. Within the ¢th group, which extends from E;_; to E;, neutrons are
assumed to diffuse according to the one-velocity diffusion equation until they have
suffered a number of collisions (1/§) In (E;_,/E;), after which they move on to the
next group. The group equation may be written in the form

_ dg (r) _
D v2¢ (r) — Noao(r) + 8(r) +—aE =0

Here ¢ is the slowing-down density. The source term S(r) includes neutrons intro-
duced into the system from fission or by inelastic scattering. In the latter case, o,
includes inelastic scattering out of the group in question. Integrating this equation
over the energy width of the 7th group yields the multigroup equation

D:V2¢; (t) — Noaigi(t) + S:(r) +¢'(x) — ¢°(r) =0

¢°(r) and ¢7(r) are, respectively, ¢ “out’” and ¢ “in,” the slowing-down densities at
the low-energy and high-energy limits of the group. The constants D; and Neg;
are now averages over the width of the group, and the source 8:(r) is integrated over
the group width.

For a small number of groups, usually two or three, the equation is formulated as
given above.  In particular, for two groups

D, V2¢, (1') - N(O’al + fl“al)@sl(r) + Si(r) =0
D2 V2¢s (r) — Naaagpe(r) + £1Noadi(r) =0

where the subscript 1 indicates the so-called “fast’’ neutron group and the subscript 2
indicates the “thermal’ group.

However, for a large number of groups (over 40 have been used on occasion) the
multigroup equation is usually written as an equation for the slowing-down density,
using the continuous slowing-down model

2 Jono - (2
vig; (r) — i S: I(r) — ¢°(r) =0
(2) v ) — () 6 +8@) + ¢ ~ @
where the bracketed quantities are again averages over the group width and where
the slowing-down density, ¢:(r), and the source are integrated over the lethargy width
of the group. The lethargy variable is defined as i

w=1In [_IOM—eV]
E(Mev) ‘

The reference energy need not be chosen to be 10 Mev; however, it has become
customary to do so.

For the highest energy group (the lowest lethargy), ¢ = 1, and if ¢/ (r) and S.(r) are
known, then the equation for this group may be solved for ¢°(r), provided that some
relation among ¢.(r), ¢°(r), and ¢’(r) is established. This value of ¢°(r) for the first
group is then identified as the value of ¢/(r) for the second group, and the process is
continued down through the remaining groups until the lowest energy (highest
lethargy) group is reached.

The relation between the ¢’s is usually assumed to be of the form

gi = wig! + weq®
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where w; and w, are constants to be chosen. A number of ways of choosing these
constants i8 discussed in Ref. 4,

Care is required in choosing the cross sections for each medium in each group. The
correct formulation for these constants can be obtained from the averaging process
indicated above. For a very large number of groups the group constants are usually
calculated from the cross-sectional curves directly, For two-group work, however,
the constants needed are usually taken from experimental data where possible, using
the relations o :

Dz = Lchaz
Dy = N(og: + ki)

&1 Wal 7

where L? is the thermal diffusion area and r is the Fermi age of neutrons entering the
thermal energy group.

Finally, it should be noted that the techniques of multigroup theory, while usually
applied to the form of the diffusion equation discussed above, are not limited to this
particular application and can be used with various other forms of the Boltzmann
equation. In particular, the Selengut-Goertzel equation has been used, as has the
form of the diffusion equation with a variable diffusion constant. In this latter case,
the Lapilacian term becomes

div D;(r) grad ¢:(z)

1.8 The Greuling or Diffusion Kernel Equation

An alternative formulation of the group picture stems from the integral form of the
one-velocity Boltzmann equation. This formulation is most simply illustrated by
considering a point, isotropic, unit source of neutrons at position r,. If the medium is
infinite and nonabsorbing, then the solution of the one-velocity integral equation for
the slowing-down density is

q1(r) = Ki(r,x)

where K is the point diffusion kernel and is defined as the probability that a neutron
which is born at ro will be removed from the group by an elastic scattering collision
at r. The point diffusion kernel is similar in its effect to the point transport kernel
discussed earlier (see Art. 1.4) except for the change in definition of the units involved.
The slowing-down density and the collision density ¢ are related by

&

q=Au

If the energy interval, Au, described by this equation for the slowing-down density
is wide compared with the energy loss in one collision, so that the continuous slowing-
down model applies, then the slowing-down density resulting from this first group
may be used as a source for the next lower energy group of neutrons, for which the
solution for the slowing-down density is immediately

gs(r) = /r , Ka(r, 1)K, (r',ro) dr’

This process may be continued for any number of groups, the solution for the slowing-
down density for the nth group being merely the convolution of the n slowing-down
kernels which apply to the higher energy groups. In an absorbing medium a very
similar result can be obtained. The solution for ¢, as a convolution of kernels is
valid for other geometric diffusion kernels provided that the material cross sections
are independent of position in the medium.

This particular integral form of the group equations uses the continuous slowing-
down picture. Consequently, the Fermi age equation can be shown to be the limiting
case of this group formulation as the number of groups goes to infinity. Also, as
in the case of the space-independent integral equation, various forms of the kernels
can be used for different physical models in order to give alternative, approximatec
approaches to the description of the energy and space variations of the neutron flux.
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2 THE SPHERICAL HARMONICS METHOD AND THE
DIFFUSION EQUATION

The one-velocity Boltzmann equation forms the basis for many calculations in
engineering practice. The most common technique for treating this equation is the
spherical harmonics method. In this article a number of approximations based
upon this method will be discussed with emphasis on their relative validities in
physical problems. *

2.1 The Spherical Harmonics Method

Basically the spherical harmonics technique consists of expanding the source and
flux distributions in spherical harmonics of the cosine of the angle between the direction
©Q and some principal coordinate direction. The source and flux distributions are
then considered to be rotationally invariant with respect to this coordinate direction.
If  is the cosine of the angle between the direction Q and the reference coordinate,
then the flux is given by

©

() =Z It 1) () Prm()

m=0

1
where pol®) = [ 60 mPule) d

The source term is treated in a similar fashion. The quantity P, (u) is the Legendre
polynomial of order m.

The cross section ¢,(Q,Q") is also expanded in harmonics of the cosine of the angle
between the incident and the scattered particles. This series may then be converted
into an expansion in the cosine of the direction angle p by means of the addition
theorem for spherical harmonics. The scattering term in the one-velocity Boltzmann
equation then becomes

= ]
5 ) @m o DNowPu() [ Palaoleu) du
m=0

1
where Osm = /__1 o5 (Q - QNPr{(Q - Q)d(Q - Q)

The spherical harmonics method then assumes that all terms containing harmonics
higher than Pn.(u) contribute negligibly to the result. This approximation to the
solution is known as the P. approximation. The resulting approximate equation is
multiplied in turn by each spherical harmonic Pr(s) and is integrated over —1 <
¢ < 1. Because of the orthogonality of the spherical harmonics, this results in a
set of n -+ 1 first-order differential equations.

2.2. The Diffusion Equation

In the P, approximation it is assumed that, in the expansions, contributions from
terms beyond the first two are negligible. It can be shown that this assumption
implies that the cross section angular distribution can be expressed in the form

o(2,2") = A + B cos (@ Q')

and that the medium involved is only weakly absorbing. Also, because the higher
harmonics express transient effects near boundaries, the P, approximation assumes
that the region in question is several mean free paths from any boundary.

The two resulting equations can be combined into a single equation for the isotropie
component of the flux.
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D V3¢ (r) — Zad(r) + 8(r) =0
1
where ESRTR)
where i is the average value of cos (2 - ©). The source here has been assumed to be
isotropic. : :

This equation is the so-called diffusion equation and is of particular use in reactor
physics because it can be solved analytically for many geometries. It provides satis-
factory accuracy as long as the conditions for validity of the approximations mentioned
above are met. In particular this equation finds use in describing the distribution
of flux of any monoenergetic neutron group within a large medium such as a reactor,
core. The diffusion equation is also often used as the basis of the derivation of the
flux disadvantage factors within a unit cell of a heterogeneous reactor lattice. The
validity of this last application is, however, open to question, since most lattice cells
contain strongly absorbing material and because the regions involved are not large
compared with a mean free path. Because of its convenience, however, the diffusion
equation is very often used to derive a first approximation to these flux disadvantage
factors.

2.3 The P, Approximation

It can be shown that the P, approximation yields the same differential equation as
does the P; approximation. The only difference is that certain correction terms occur
to the constants in the equation. In particular, the diffusion equation resulting
from the P; approximation is

- DV (r) = Zog(r) + 8@ =0
1 4 za
ith D=— - J1 4 —=
wit, 3%.(1 — &) [ * 53,2 — %;ﬂ)]

While this equation yields improved values of the constants, the generality of its
application is not greatly improved and the remarks in the previous section apply.
Again, the approximation is valid only for the case of weak absorption where

E‘l

H

<1

2.4 The P; Approximation

If it is assumed that all terms beyond the fourth contribute negligibly to the result,
a distinet improvement in the generality of the solution is obtained. In particular
the equation which results for the flux is now of fourth order and has solutions contain-
ing terms which affect the flux particularly in the region of boundaries.

Experience has shown that the P; approximation provides a much more accurate
description of the neutron flux within a reactor lattice cell. Generally the P; flux dis-
tribution is entirely satisfactory within the fuel element and is fairly good in the sur-
rounding moderator. Comparison with higher harmonics (Ps, Py, etc.) has shown
that in most cases of interest the P; approximation is satisfactory and provides most
of the needed improvement over diffusion theory.

The P; approximation involves the solution of large algebraic systems and is usualiy
carried out on digital computing machines.

It should be recognized that although the P; approximation effectively provides a
correct description, for most physical cases, of the neutron flux distribution for a one-
velocity group of neutrons, many cases of interest are not correctly described by such
a one-velocity model. Because of its complexity the P; approximation has not been
widely applied to two-or-more-velocity approximations although some work has been
done on a two-group approach.?
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3 OTHER TECHNIQUES FOR TRANSPORT PROBLEMS

In this section several techniques of a somewhat unconventional nature will be
considered. Historically, the solutions to most reactor problems in neutron transport
have been obtained with the methods which have been described in the previous
sections. Recently, however, two suggestions have been made concerning other
approaches to the above equations. These two ideas are the hemispherical harmonics
method and the S, method. In addition, an entirely different technique of great
general applicability has been developed. The Monte Carlo method, as it is called,
may become important in the future for the solution of complex problers of all kinds
Jif the abilities of computing machinery continue to increase at their present rapid rate.

3.1 Hemispherical Harmonics

The method of spherical harmonics, which has been discussed in some detail earlier,
has proved of great use in many applications. However, the rate of convergence of
the expansion in spherical harmonics is not known, and the success or failure of the
method has been determined largely by numerical computations and by comparison
with experiment. The complexity of solving the higher approximations in spherical
harmonics has limited the use of the method, in most cases, to the P; approximation.
It would be desirable to have a method which would retain the advantages of the
spherical harmonics method but which would converge more rapidly, thus yielding
equivalent accuracy with less algebraic complexity.

It has been suggested that in most cases of interest the majority of neutrons flow
in the directions of the principal coordinate axes. That is, the boundaries between
regions are often surfaces of constant radius r or displacement z. Consequently,
the gradient of flux will often be directed perpendicularly across these boundaries.
The spherical harmonics method, however, expands the flux in a series of harmonics
containing some components which are largely in a direction parallel to the boundaries.
Improved convergence might be obtained if an expansion were used which eliminated
components of importance which were parallel to the boundary. This is what the
hemisplierical harmonics method attempts to do.

Instead of a single expansion in g, the cosine of the angle between the velocity
vector and the principal coordinate direction, the flux is expanded in two different
ways. That part of the flux with u betwcen —1 and 0 is expanded in harmonics of
the variable (2u + 1), while that part of the flux with x between 0 and 1 is expanded in
harmonics of the variable (20 — 1). In this way two complete expansions are derived,
the sum of which represents the neutron flux as a function of angle at the space point
in question. As with the spherical harmonics method, these expansions are trun-
cated arbitrarily after a given number of terms to achieve an approximation. For
consistency, the two expansions are cut off after the same number of terms. Because
the functions involved are still Legendre polynomials, the approximations are called
P,.. for the case where each expansion is cut off after n + 1 terms.

Although not much work using this approximation has appeared in print, it is
expected to have considerably improved convergence characteristics, with a P,
approximation yielding accuracy comparable to a Ps; approximation in the spherical
harmonics method, but with considerably reduced algebraic complexity. Unfortu-
nately, however, the hemispherical harmonic equations are not analytically solvable
in cylindrical geometry. Because of the great interest in this type of configuration,
however, numerical solution of the P,,.» equations will probably be attempted for this
case in the near future.

An additional improvement is to be expected from the hemispherical harmonics
method in the treatment of black boundaries. Because the hemispherical harmonics
do not contain flux components parallel to most boundaries, a more correct descrip-
tion is to be expected in the vicinity of absorbing boundaries.

The method of hemispherical harmonics is sometimes referred to as the method of
Yvon,®
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3.2 The 8. Method

The 8. method of Carlson? is still another approach to the solution of the steady-
state Boltzmann equation. Tt is usually applied to the one-velocity equations which
are used in multigroup theory. However, it does not require the diffusion approxi-
mation but is applied to the case where, for each energy group, the one-velocity Boltz-
mann equation holds with but two restrictions. The source term is taken to be iso-
tropic, and energy degradation is taken to be independent of the deflection angle of
the scattered particle.

The S, method then consists of approximating the flux as a function of direction,
¢(r,u), by a series of straight-line segments

$lru) = E—H girp) + HLE )
Mi T 1 My T KMi-1
where B <u <y
J7=012...,n

The order of the approximation is characterized by the number of line segments n
which isused. This approximation is then used to reduce the one-velocity Boltzmann
equation to a set of n equations in the n + 1 variables ¢(r,u;). An additional equa-
tion is obtained by setting 4 = —1 directly in the one-velocity Boltzmann equation.

The resulting set of equations is then solved numerically for the fluxes, an initial
guess for the sources having been made. The equations for the various energy groups
are solved in order of decreasing energy, and a new approximation to the fission source
is obtained. The process is continued until an acceptably small change is obtained
between two successive source calculations.

The S, method has been applied to time-dependent problems as well as to the
steady-state problem outlined above. For the stationary case the anisotropic problem
(which includes the correlation between scattering angle and energy degradation)
has been solved for spherical geometry.

The chief value of the 8, method would appear to be its ease of adaptation to cal-
culation on digital machines. It has been applied to a large number of varied prob-
lems, chiefly at the Los Alamos Scientific Laboratory. ’

One over-all comment is applicable to the S, method. Although it is usual to
choose the n intervals in ux as of equal size, it is possible to choose unequal intervals.
For a given value of n the most efficient choice of intervals would appear to be that
given by the Gaussian integration formula,® and it can be shown that this choice of
Gaussian intervals will yield values for the isotropic flux exactly equal in accuracy to
those obtained with the spherical harmonics approximation with the same n. (The
angular distributions will, however, not be the same as given by the spherical harmonics
method.) Therefore, it would appear that the S, method would be less efficient than
the corresponding spherical harmonics approximation. However, it may have advan-
tages in ease of application which would outweigh the reduced efficiency in convergence
of the approximation.

Sykes? has reported a method using a double Gaussian integration. Such a tech-
nique would appear to be a numerical equivalent of the hemispherical harmonics
method of Yvon.

3.3 The Monte Carlo Method

A new technique, which is of a different nature from any discussed so far, is gaining
importance for use in transport problems as more powerful calculating machines
become available. This technique applies the statistical methods of random sampling
to those physical and mathematical problems to which a probability analysis is
applicable either directly or as an analogue. Because of the randem-sampling
approach, in which random numbers are actually used, the technique has acquired
the name of the ‘“Monte Carlo’’ method.
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The history of a neutron in a chain reactor may be represented accurately as a
sequence of statistical events. A cross section is, by definition, the probability that a
neutron will suffer a collision in traversing a given distance of material. Thus, a
neutron may be introduced into a system at some random point with an energy chosen
at random from the distribution of fission neutrons and with random orientation.
Successive random selections are then made to determine, with appropriate dis-
tributions of cross sections and other material constants, when and where the neutron
is scattered or slowed down or absorbed. The process is continued until the neutron
is captured or escapes from the system. The average characteristics of the system,
such as neutron diffusion, aging, and attenuation, can then be obtained from a statis-
tical average of many such histories.

In general, the Monte Carlo method may be regarded as a technique for evaluating
integrals or for solving integral or differential equations. Its chief virtue becomes
evident for problems involving many dimensions in that the difficulty of solution
increases roughly with the number of dimensions rather than with the nth power,
where 7 is the number of dimensions, which is the case for a numerical technique such
as Simpson’s rule. In practice, it turns out that Monte Carlo is superior to other
numerical approaches if the dimensionality of the problem exceeds 4 or 5.

With the Monte Carlo method, in principle, if the fundamental probabilities of the
events are known (cross sections, etc.), any problem can be solved to any desired
degree of accuracy. However, very time-consuming sampling and statistical cal-
culations are often required. Consequently, Monte Carlo has been applied primarily
to problems which have been prohibitively difficult to handle by other methods. In
even these cases it may still be necessary to restrict the Monte Carlo analysis to
certain aspects of the problem or to perform supplementary approximate calculations
or experiments on aspects amenable to simpler treatment.

It is illustrative to consider two problems to which the Monte Carlo method has
been applied. The very different requirements of these problems are indicated by
the following formula, which is derivable from the binomial probability distribution:

_1-r
2P

Here N is the number of case histories necessary to calculate the probability P of a
process to within the relative error e. The assuraption is made that ordinary sampling
procedures are used. »

Consider now a problem in reactor shielding, where it is desired to know the prob-
ability of a given radiation penetrating a shield of some arbitrary composition and
shape. For cases of engineering interest, P may be of the order of 10719, so that N is
prohibitively large even though a 100 per cent error may be tolerable. Physically,
the difficulty is that an attempt is being made to get statistical accuracy in the num-
ber of radiations penetrating the shield. But a very large number of radiations
must be followed in order to find just one which succeeds in getting all the way through.
The situation is made still more difficult if the composition or geometry of the shield
is complex, since individual particle histories then become tedious to calculate. A
considerable amount of work has gone into obtaining improved mathematical tech-
niques for reducing the number N of histories which are required.!® Basically, these
improvements deal with sampling methods which sample more efficiently the particles
having a larger probability of penetrating the shield. The improvements also
attempt to obtain more information from a given history or to perform a suitable
transformation of the problem into a related one in which the probability of success P
is considerably larger.

As a second example, consider the calculation of the resonance escape probability
in a heterogeneous lattice moderated with light water. Here each history is short,
since only a small number of collisions are required to carry a neutron completely
through the resonance region. Furthermore, the probability of success P is about
0.9, so that 10% to 10* histories will determine the resonance escape probability to an
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accuracy of 1 per cent. This problem has been carried out successfully using ordinary
random sampling.!! It should be noted that although this is & case peculiarly suited
to Monte Carlo calculation, several hours of Univac time are required to complete a
single computation of resonance escape.

One further comment on the Monte Carlo method is appropriate. Suppose that a
calculation is to be performed of the reactivity of a nuclear reactor. By random-
sampling techniques it is, in principle, possible to determine the average number of
neutrons produced by each neutron introduced into the system (that is, the reactivity).
But the spatial and energy distributions of the neutrons will not be determined accu-
rately by this calculation. A very much larger number of histories would have to be
followed in order to determine, to satisfactory accuracy, the flux of neutrons of each
energy at each point in the reactor. On the other hand, an analytical or conventional
numerical solution of the Boltzmann equation will give not only the over-all char-
acteristics of the system but the distributions of the neutron flux. This is because,
in the analytical case, the over-all characteristics are computed from the solutions
for the fluxes. From this comparison it may be seen that the Monte Carlo method
is useful primarily where the desired results are a limited number of specific system
characteristics rather than the complete solutions for the system.

The present time-consuming Monte Carlo method will, in the future, become prac-
tical as better computing machines develop and as improved sampling techniques
provide greater calculational efficiency. With the rising cost of experiments and with
the inevitable increase in the complexity of engineering nuclear systems, the Monte
Carlo method can be expected to be brought increasingly into use. This will be
true even though the first wave of enthusiasm for the method is now over and the
practical difficulties are clearly realized.

4 THE TREATMENT OF BOUNDARIES IN NEUTRON TRANSPORT

.

Once solutions have been obtained for a specific material by any of the analytical
methods discussed above, it is necessary to be able to join solutions for different
media and to include geometrical restrictions on the size of the system. Although
very simple methods can be used to achieve these definitions of the geometrical
problem, there are more subtle techniques which can materially improve the accuracy
of a calculation.

4.1 Simple Boundary Conditions

The fundamental condition for matching solutions across a boundary between
regions is that of physical continuity. In particular, for the Boltzmann equation
this condition may be stated that the flux, ¢(»,,r), must be continuous across a
boundary for all @ and ». For the more practical reductions of the Boltzmann
equation, this condition extends directly. Consider, as an illustration, the spherical
harmonics equations. The condition of continuity requires that the components of
the flux, into which the total flux has been expanded, shall each be continuous across
a boundary. In the P, and P; approximations, the one-velocity Boltzmann equation
reduces to two first-order differential equations for the flux components ¢(r) and
¢:(r), where :

wne) = [ 60uPaG) o

The ¢o(r) component is merely the integrated isotropic flux, since Po(u) is a constant,
independent of x. Similarly, since Pi(x) is equal to u, the ¢:(r) component of the
flux is directly interpretable as the net neutron current in the r direction. Con-
sequently, the boundary conditions for the spherical harmonics method in the diffusion
approximation amount to requiring continuity of flux and neutron current across a
boundary. In practice, it is sufficient for criticality calculations to reduce these two
conditions to requiring that the diffusion constant times the logarithmic derivative of
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the flux
B-v¢

be continuous across an interface.

Of course, the condition of continuity of flux and current (or of higher components
of the flux in other approximations than the diffusion approximation) assumes that
the interface is passive. In the event of an active interface, which may be either an
absorber of neutrons or a source, an obvious conservation relation replaces the above
continuity conditions.

4.2 Extrapolated End Points

Special treatment is required for the case of a black boundary or its equivalent, a
boundary with an infinite region of vacuum. The former case may arise in the
treatment of strongly absorbing media (such as control rods), and the latter may arise
during the treatment of bare reactors where the active lattice has an outer boundary
in common with a region assumed to be of infinite extent and which has the properties
of a vacuum. The obvious boundary condition which may be imposed is that the
flux shall go to zero at the boundary of such media. However, in the adjoining active
region the flux does not physically go to zero at the boundary, since there will be a
streaming of neutrons toward the infinite sink represented by the black or vacuum
region. The solution to this seeming paradox has been obtained, in practice, from
an examination of the desired quantities in the finished calculation and takes the
form of the so-called extrapolated end point.

What is desired in calculations of criticality and in most flux distributions is a
correct treatment of flux at relatively large distances from a boundary. In such
regions, the transient terms in the solution to the equations will have disappeared and
only the asymptotic solutions will remain. It would be desirable, thus, to require
that the boundary condition imposed produce a correct asymptotic flux distribution.

In the commonly used diffusion approximation, the solution to the flux equation
contains a limited number of transient terms and gives a physically correct description
only at points far from boundaries. Put another way, the diffusion approximation
can be shown to be the asymptotic solution of the transport equation in weakly
absorbing media and away from boundaries. Consequently, it is desired to achieve a
boundary condition such that the diffusion-theory solution will approach the correct
transport solution at interior points in the region. Extrapolation of the correct
asymptotic or diffusion solutions through the boundary and into the adjoining medium
shows that if the flux is required to go to zero at this extrapolated boundary, then a
correct asymptotic description will be obtained. This treatment, however, will not
yield a correct description of the neutron flux in the vicinity of the boundary.

If the physically meaningful boundary condition is imposed that the current return-
ing from the black or vacuum region should be zero, then solutions may be obtained
which yield quantitative estimates of the size of the extrapolation distance which is
to be used with a zero-flux boundary condition. A linear extrapolation of the diffu-
sion solutions shows that, for a plane boundary, the extrapolation distance is 24X
However, consideration of more accurate approximations to the Boltzmann equation
and its solutions shows that a more correct extrapolation distance for the asymptotic
solution is 0.71A,.. The quantity A, is the transport mean free path of the active
medium and is equal to three times the diffusion constant D. Thus for a bare reactor,
the flux is required to go to zero at an extrapolated boundary which is 0.71X. into the
adjoining vacuum medium.

The above values for the extrapolation distance apply for a plane boundary and
for the case of small capture and isotropic scattering. Similar results for plane
boundaries, with other conditions of capture or scattering, are given in Refs. 12. For
most cases, however, the value of 0.71A;- is adequate.

For curved boundaries the extrapolation distance varies as a function of the radius
of curvature. For a black sphere, the extrapolation distance increases monotonically
to 44\, in diffusion theory, as the radius goes to zero. This is physically because a
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restricted black region (such as a sphere) depresses the flux in the adjoining medium
less than a boundary which is very large (such as a plane).

The use of diffusion theory with the appropriate extrapolation distances for the
boundaries involved will give rigorously correct values for the flux a few mean free
paths from the boundary. For a very large class of cases, this treatment will yield
satisfactory accuracy.

4.3 Serber-Wilson Boundary

Although the Serber-Wilson method is a technique for performing criticality cal-
culations, it is included in this section because it is primarily a special case of the
boundary conditions to be applied to transport problems. The Serber-Wilson method
has been applied to the calculation of small, reflected reactors with considerable
success.’ Although this has been its major use, it has also been applied to other
problems, notably the calculation of the thermal flux distribution in a unit lattice
cell of a heterogeneous reactor.t

The Serber-Wilson method is primarily for one-velocity problems and deals with the
asymptotic solutions to the fransport equation. The asymptotic forms of the solu-
tions are assumed in each of the media concerned, and special boundary conditions
are used to assemble these individual solutions into a single description of the physical
system. Because conservation of neutrons is implied by the continuity of net cur-
rent across & boundary, this condition is retained from the usual diffusion-theory
approach. However, for the simplest case of a spherical reactor with an infinite
reflector, the usual continuity of flux is not required, since, with a true solution to
the transport equations, the asymptotic or diffusion solutions are not continuous at
the boundary. For this simple example, only one additional equation is needed to
replace the discarded flux continuity condition. The so-called “Serber condition”
which is used requires that the one-velocity Boltzmann equation be satisfied exactly
at the center of symmetry of the system, which is the origin in this case. This con-
dition then allows the system to be completely deseribed.

For this simple case, with a single infinite or finite reflector, numerical results are
easy to obtain and are given in Ref. 13 in convenient form for the solution of problems.

For systems involving more than one intermediate boundary it is necessary to
obtain such af additional equation for each boundary. This is accomplished by
satisfying the Serber condition ““in detail.”” In the simple spherical case, satisfaction
of the Serber condition in detail results in the so-called ‘“ Wilson conditions,”” which
require that the flux in the one-velocity Boltzmann equation ¢(r,u) be continuous at
all boundaries for the value g = —1. These radially inward fluxes are, however, to be
computed as if the two adjoining media were infinite in extent.

Although the Serber-Wilson method has been useful for calculation of reflected
systems, it has not generally been extended to the many-velocity case. Consequently,
it can be helpful only where the nature of the system makes a one-velocity approach a
reasonable approximation to reality.

4.4 Albedo

The albedo is a concept which has been of use for those systems where one-velocity
diffusion theory is adequate. It is simply defined as the ratio of the current density
out of the medium in question to the current density into the medium in question.
The albedo is thus the fraction of neutrons which are scattered back across the bound-
ary after any number of collisions and is, to this extent, a “reflection’ coefficient.
For the diffusion-theory case, the albedo can be shown to be a property of the reflecting
medium only and, for this reason, allows certain simplifications to be made in the
treatment of boundaries between a reactor core and a reflector. Inserting the defini-
tions of neutron current into the definition of the albedo gives immediately

.1+ (2D/$)(de/dx)
Albedo = 8 = o o) (de/dz)
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Because of the required continuity of flux and current in diffusion theory, the quanti-
ties ¢ and D d¢/dz may be chosen for either medium. For a finite slab reflector the
solutions of the diffusion equation can be inserted directly to give

- 1 — 2xD coth xa
1 4+ 2D coth xa

where a is the slab thickness, including the extrapolation distance, and x is the recip-
rocal of the diffusion length. - For an infinite slab reflector this becomes

_ 1 —=2xD
1+ 2xD

It will be noted that the albedo of a finite slab is less than that for an infinite slab
because of the loss of neutrons by escape from the outer boundary. When the
reflector is more than about two diffusion lengths thick, 2 finite reflector is essentially
indistinguishable from an infinite reflector.

For spherical boundaries the expression for the albedo will be different, with the
albedo of a medium being less when it surrounds a spherical source. This is because
neutrons which get into the reflector an appreciable distance have a smaller solid
angle into which they can be scattered and still return to the source region. Thus the
albedo will depend both on the properties of the medium and on its geometrical shape.
For other shapes see Art. 2.3 of Sec. 6-2.

A good reflecting medium will have a diffusion coefficient small compared with its
diffusion length, as may be seen from the above expressions. The albedo is 90 per
cent or over for infinite slabs of good reflecting materials such as heavy water or
graphite. Because of its absorption, an infinite, light-water slab has an albedo of
only 0.821 for thermal neutrons.

The albedo can be used to replace other forms of boundary conditions. For a
plane boundary .

1de 1 [1 — B]
1+8

¢dc 2D
and the extrapolation distance at the boundary is
d = 0.7 [i * ]

£

B8

For the case of a nonscattering absorber or of vacuum, the albedo is zero and this
equation reduces to the extrapolated end point treated earlier.

While it is a conceptually pleasing quantity, the albedo is limited in its reactor
applications to cases where the one-velocity diffusion picture is adequate. Because
of this, it has not found wide application to the more recent reactor systems, par-
ticularly those containing light water where important boundary effects like the rise
in thermal flux at a core-reflector interface can be described only on a multivelocity
basis. The albedo has, however, been useful in shielding work.®

5 REACTOR EQUATIONS

Many problems in reactor engineering may be solved as transport theory problems
directly. That is, they take no cognizance of the multiplying nature of the system.
However, it is necessary in performing criticality ealculations to include this important
characteristic. The modification and extension of the methods of transport theory
to include these problems will be treated in this section, along with a valuable tool for
predicting the effects of small disturbances on a chain-reacting system.

6.1 The Reactor Equations and Their Relation to Transport Theory

The methods of transport theory have always included a provision for an arbitrary
source of neutrons. In the reactor equations, this source is assumed to come from
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neutrons born in fission. KExternal sources are normally not included in eritical
systems, although they are often used during the approach to critical. In this section,
however, only systems which are critical will be discussed, so that no provision for
an external neutron source will be made.

In any reactor, the number of neutrons introduced into the system is proportional
to the number of fissions, which, in turn, is proportional to the flux of neutrons which
produce fission. For a uniform thermal reactor, then, the source of neutrons will be
proportional to the thermal flux at each point. '

Consider the simple case of a one-group diffusion equation. The source of thermal
neutrons will be proportional to the flux, the factor of proportionality being the absorp-
tion cross section times the number of neutrons produced for each one absorbed at the
point in question, or k. The one-group reactor diffusion equation is then

D v (r) + Noo(k, — 1)o(r) =0

As has been discussed earlier, however, the one-group picture does not provide an
adequate description for most engineering reactors. In a two-group picture, the
source of fast neutrons is proportional to the thermal-neutron flux, the constant of
proportionality being equal to (k,/p)Noe:. Here p is the resonance escape proba-
bility. Assuming that resonance capture occurs between the fast and slow groups,
the source of thermal neutrons is proportional to the fast flux with a constant of
proportionality of pNtie,. The quantity N is defined as the macroscopic cross
section for the removal of a fast neutron from the fast group by slowing down into
the thermal group. Hence, the two-group reactor equations become

0

I

Dy v, (1') — N(oa1 + &10a0)1(x) + % Naysg:(1)
D2 V23(t) — Nowega(r) + pNfioadi(r) =0

The one-group equation and the homogeneous part of the two-group equations
may be written in the form of a wave equation:

) vie(r) + Bre(r) = 0
Solutions of this equation for various geometries are well known.'¢ Use of this

homogeneous solution in the two-group equations leads directly to

_[DiB* + N(owr + fodlen + % Nowspe = 0
pN 10141 — (D2B? + Nogs)ps = 0

where the constant B? is taken to be the same for both groups. By Cramer’s rule,
the condition for a nontrival solution leads immediately to the two-group critical
equation (for small absorption in the fast group)

k, = (1 +B)A + L*B?)

The corresponding one-group equation is

k, =1+ M*B?
In both of the above critical equations the following relations have been used:
D, D,

2

e NElﬂ'sl L= Noss

M2 =147

Obviously, almost any transport theory approach can be used to produce solutions
to the flux equations and to give a criticality equation. The approach can be made
either through the integrodifferential formulations or through the integral equation
formulations of the Boltzmann equation. One further form of the critical equation is
worth noting here. On the basis of age theory (or from the integral equations, using
Fermi age or Gaussian kernels) the rigorous critical equation can be shown to be (no
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“group’ ’ approximations having been made)
ke B% =1+ L?B?

For a large reactor where the buckling B? is small, all the above equations can be
reduced to the form of the one-group equation

k, =1+ M:2B?

In general, the remarks concerning the validity of the diffusion equation which
were made earlier are still pertinent for criticality work. The diffusion equation is
only an asymptotic solution of the Boltzmann equation. It will give correct results
for a bare reactor if the flux is required to go to zero at a correctly chosen extrapolated
boundary. Since the solutions for the various energy groups of neutrons must be
required to go to zero at the same boundary, the above equations assume that the
extrapolation distance is independent of neutron energy. This assumption is adequate
for large reactors but may cause difficulty for the case of reactors which are not very
large compared with the extrapolation distance.

Finally, it should be noted that the constant B2 as a property of a medium, is
called the “material buckling.”” However, as a solution to the wave equation for a
given geometry, this constant is referred to as the “geometrical buckling.”” In order
that a reactor be just critical and that the properties of the medium be just that
required by the geometry, the material buckling and the geometric buckling must be
equal. In this particular case, they are both referred to as the ‘“‘critical buckling.”
This condition forms a simple, alternative statement of the criticality equation

Bzcrit = B02 == Bm2

6.2 The Adjoint Equation

Although it is a purely mathematical artifice, the concept of an adjoint flux is very
useful in evaluating the effect of small disturbances on a reactor by means of per-
turbation theory. The adjoint equations are usually based upon the group reactor
equations discussed above. If the group fluxes are represented by the vector &,
then the reactor equations may be written in the matrix notation

M¢é =0

The adjoint of the matrix M may be formed by taking the complex conjugate of each
matrix element and interchanging rows and columns. The resulting adjoint matrix
M* will then have eigenfunctions analogous to the neutron flux vector ¢. These
eigenfunctions are defined by an eigenvalue equation similar to the reactor equation

M*¢* = 0

The eigenfunctions of the adjoint matrix are referred to as the “‘adjoint fluxes.”” The
equations for the two-group adjoint fluxes are thus

Dy V2¢,*(r) — N(oa1 + £10:0) 1% (1) + pNE10aade* (1) = 0
D2 V2r* () — Noasgn*(r) + % Nowd*(x) = 0

These equations may be solved in a manner entirely similar to that employed for the
neutron flux equations. The resulting adjoint fluxes, however, have little direct
physical significance.

For reactor work, the most important property of the adjoint fluxes and of the
adjoint matrix may be shown to be (coming directly from the definition of a Hermitian
conjugate or adjoint)

fV ¢k*M¢k dV = ,[V (!)kM*(I)k* dv
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where ¢ and ¢x* are two particular eigenfunctions of their respective eigenvalue
equations.
This property makes possible the derivation of perturbation theory.

5.3 Perturbation Theory

Let the reactor equation matrix be perturbed by some small change AM in such a
way that the reactor is just maintained critical. The reactor equation under this
new condition is then

M + aM)¢’ =0

where the fluxes ¢’ are those corresponding to the perturbed condition. Multiplying
this equation by ¢*, subtracting the product of the perturbed neutron fiux and the
adjoint equation, and integrating the result over the volume of the reactor, the result i3

f,, $*Mo’ dV — fV O’ M** dV + fv $*AM ¢’ dV =0

The first two terms are equal in magnitude because of the properties of the adjoint
fluxes and the adjoint matrix. Consequently, the perturbation equation is

fV $*AM ¢’ dV =0

This equation provides the basis for evaluating the changes which must be made, for
example, in a control-rod setting to offset a change in some other reactor parameter.
In essence, the perturbation relation gives the relative weighting of small effects in
the reactor. If this small effect does not change the neutron flux appreciably, the
unperturbed flux & may be used as an approximation to the perturbed flux. The
relative weighting of perturbations to a reactor may thus be stated to be the integral
of the product of the adjoint flux times the neutron flux over the region of the per-
turbation,*or

fv S*AM $dV = 0

For the special case of a one-group approximation, the reactor matrix M is self-
adjoint, and perturbations are to be weighted as the square of the neutron flux, except
for changes in the diffusion coefficient. These latter are to be weighted as the square
of the flux gradient. By the same approach it can be shown that if the reactor is
large (or k — 1 small enough), regions of different buckling in a reactor are to be
weighted as the square of the flux integrated over each region of constant buckling.

6 THE FOUR-FACTOR FORMULA

The four-factor formula provides a very useful conceptional approach to neutron
multiplication in a chain-reacting system. Standard formulas for. calculation of the
four quantities involved are well known and are presented in Art. 9 of Sec. 6-2.
1t is, however, necessary to realize that this physical picture is, in many cases, only a
rough approximation, so that the formulas involved are sometimes inadequate for
cases of engineering interest. In this section the four-factor formula will be discussed
from the point of view of its validity and its application to cases where the usual
approximations fail.

6.1 The Physical Concept

In the four-factor formula the physical processes within a reactor are pictured as
follows:

1. All fissions in the primary fuel are caused by neutrons of thermal energy.

2. The neutrons produced in fission are all fast. The number of neutrons entering
the resonance absorption region is equal to the number » of fast neutrons produced
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per thermal absorption in fuel, times the fast fission factor e. The fast fission factor
is the number of fast neutrons slowed down below the fast fission threshold per fast
neutron introduced into the system.

3. Of the neutrons entering the resonance region, a fraction p escapes resonance
absorption.

4. The resulting thermal neutrons are then absorbed in fuel with a probability f,
as opposed to their being absorbed in all other materials.

This neutron cycle was conceived primarily for use in graphite or heavy-water
reactors and is very often adequate in reactors of these types. The neutron mul-
tiplication k., for an infinite region of the lattice in question is the product of these
four factors

k, = nepf

and is a useful quantity as a first step in proceeding to calculations of finite-sized
reactors.

6.2 The Fast Effect

A fraction of the neutrons produced in fission are at energies sufficiently high to
produce fission in materials such as U2 or Th?%2. These neutrons will also be able
to produce fission in isotopes such as U235, but the relative effect of these latter mate-
rials will be small, since their relative abundance in low enrichment reactors is small
and since their microscopic fission cross sections at high energies are only comparable
to the cross sections of other materials.

In the conventional formulas for the fast effect, it is assumed that a fission neutron
will produce fissions only in the lump of fuel in which it is born. If it escapes from
this lump without interaction, it is considered to be lost from the high-energy region.
Corrections may be made for neutrons which leave a lump but are immediately
scattered back into it. This formulation of the fast effect has been developed exten-
sively for a number of fuel geometries.

As long as a fission neutron has a negligible chance of striking some lump of fuel
besides the one in which it was born, the traditional approach to the fast effect holds
satisfactorily. However, some reactors, notably those moderated with light water,
have their fuel elements very close together, so that a very significant number of
fissions in the high-energy region is produced by neutrons from one lump entering an
adjacent lump. Where this effect is small, a correction may be derived for the inter-
action fast effect and may be used to modify the conventional approach. However,
in many reactors of engineering interest the fuel lumps themselves are small enough
and close enough together that the majority of the fast effect is produced by this
interaction type of phenomenon. In this case, it has been found more successful to
approach the fast effect from another standpoint.

The majority of the fast effect in a close-packed lattice is essentially that effect
which would have been produced in a homogeneous mixture of fuel and moderator
of the same average composition. Hence, 2 homogeneous fast-effect calculation can
be made and can then be corrected for the slight increase in fast effect due to the heter-
ogeneity of the lattice. ~ This approximation has been found to give good agreement
with measurements.!” TFast-effect measurements for light-water uramium lattices .
are much larger than would be expected from the conventional formulas.®

6.3 Resonance Escape Probability

The normal formulation of the resonance escape probability p depends almost
entirely upon the evaluation of an effective absorption cross section for the fuel in
its actual geometrical configuration. This effective cross section has been measured
for several specific cases,'® and these measurements have given rise to the empirical
surface-and-mass formula conventionally used in such calculations. This empirical
approach to the calculation of resonance absorption relies upon a formula which
breaks the effective resonance cross section into a strongly self-shielded surface term
and a weakly self-shielded volume term. Unfortunately, the problem of arriving
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at the constants in this formula, starting from fundamental cross sections, is very
difficult because of the very large self-shielding of the absorption resonances.

Care must be taken in the use of the effecmve resonance integral formulation for
resonance escape. If epithermal absorption in U235 is neglected, then a compensating
correction must be made in the epithermal absorption properties used for U238, In
particular, the relative cross sections used for these two isotopes in the thermal region
will adequately account for the competition between the 1/» portions of their absorp-
tion cross sections even in the resonance region. Thus, as a minimum, if epithermal
fission in U2 is ignored, the 1/v component of the U232 cross section should be sub-
tracted from the resonance integral. This treatment still ignores absorption in the
U235 resonances which are, however, not very pronounced. Note however that when
explicit account is taken of epithermal U2% absorption, the 1/» correction to the U238
mass absorption must not be made.

Tor the case of a close-packed lattice, where a neutron has a reasonable probability
of traveling from one fuel lump to another fuel lump without encountering a moderator
atom, the concept of surface absorption is subject to correction. In these lattices,
the uranium atoms at the surface of a fuel lump are partially shielded by the uranium
atoms in adjoining fuel lumps. That is, the neutron spectrum impinging on the lump
is not that produced by full moderation but is partially depressed in the energy region
of the strong absorption resonances by the presence of other lumps. Such an inter-
action correction,?® similar in mathematical formulation to the correction for inter-
action fast effect, should be applied to all lattices which are sufficiently tightly packed.

The justification for the use of an empirical formula for resonance absorption is
simply that for a heterogeneous lattice there is no other adequate way of evaluating
such a quantity. In a difficult geometry the mathematical complexity is just too
great. Some progress is being made, however, with the use of high-speed digital

computers in the calculation of resonance escape from fundamental cross sections by
use of the Monte Carlo technique.!

It is to be hoped that a sound theoretical basis for investigating resonance escape
in geometries of engineering interest will result from this work. It has already been
reported?! that an energy-dependent cell calculation, using Selengut-Goertzel theory
in the moderator and an appropriate boundary condition at the surface of the fuel
rod, gives excellent agreement with the results of the Monte Carlo calculation. With
the aid of digital computers such an approach may well provide the engineering tool
that is needed.

6.4 Thermal Utilization

The fraction of thermal neutrons captured in fuel material (usually uranium) is
called the thermal utilization. Calculations of the thermal utilization by conventional
methods are approximate chicfly because of the use of inadequate methods for com-
puting thermal neutron flux distributions and because of the approximate nature of
the description of the energy distribution of thermal neutrons.

In many cases diffusion-theory formulas are used to calculate the dlsadvantage
factors with which to welght cross sections. The dlsadvantage factor is an expressxon
of the relative welgmea average fluxes in the different materials and is d6pendent
essentially upon the ability to calculate correctly the detailed thermal flux distribution
within the reactor lattice. For many cases of interest, diffusion theory will not give
this flux distribution to adequate accuracy. Various other approaches have been
used to obtain adequately correct disadvantage factors. In particular, the P;spherical
harmonics approach has been found to be extremely useful.?? The Serber-Wilson
technique has also been used for lattice calculations.’ This method appears to yield
improvements over diffusion theory but it is not expected to yield as accurate results
as it does in criticality calculations because of the much greater importance of higher
order terms in the solutions for the flux in a reactor lattice cell.

The second difficulty with caleulations of the thermal utilization arises from the
energy distribution of thermal neutrons. To begin with, this distribution is affected
by moderator temperature and by the absorption in the lattice. If all cross sections
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varied with energy in the same way (usually 1/v), these spectrum effects on f would be
relatively minor. However, the cross sections of many fuel materials are decidedly
not 1/v and, to this extent, provide a need for the calculation of the neutron flux
spectrum in some detail. This is particularly important for reactors containing
appreciable amounts of plutonium because of the pronounced resonance in the cross
sections of this material just above the thermal-energy region. For such materials,
in order to choose cross sections correctly, it is necessary to average the energy-
dependent cross-section curves over the neutron distribution.

The calculation of thermal-neutron spectra is exceedingly complex because of the
effect of molecular binding on the scattering atoms. To date most calculations have
dealt with gaseous moderators and no adequate treatment is available for the cases
of real interest. Methods for getting a temperature characteristic of some equivalent
Maxwellian distribution are often used. This effective temperature problem is dis-
cussed in Art. 7, Special Reactor Problems.

A further complication in the determination of neutron spectra for use in thermal
utilization calculations is the fact that the spectrum is not constant throughout the
lattice but will be of somewhat higher energy (usually referred to as “hardened”) in
the regions of low moderation and high absorption. Both for the choice of cross
sections and for the calculation of the flux distribution, it is the neutron spectrum
locally incident upon the atoms in question that is desired. Hence, it is necessary,
ideally, to know the spectrum at each point in the lattice. Calculations of these
hardening effects have been made, but generally the variations of the neutron spec-
trum throughout a lattice are not of first-order importance and are usually neglected
in reactor calculations, except for reactors of unusual type.

6.5 Fast Neutrons per Thermal Absorption

The calculation of the number of fast neutrons produced per thermal neutron
absorbed in fuel is usually straightforward. It is made complex only by the fact that
the ratio of capture to fission in fissionable materials varies slightly with energy.
Thus, » is somewhat dependent upon the neutron spectrum. For materials other
than plutonium this variation is relatively minor. For plutonium the presence of
the 0.3 ev resonance, with its accompanying change in the value of capture-to-fission,
again demands a considerable knowledge of the thermal neutron spectrum in order
to obtain a satisfactory value for n. The value of 5 for Pu?®, for example, is given as
2.03 at 2,200-m/sec neutron velocity.?* However, because n is lower in the large
resonance at 0.3 ev, the value of 5 for Pu??¥ in a typical power reactor will be about
1.85.

6.6 Inadequacies in the Formulation

The above discussion has primarily involved improved methods for calculating the
various components of the four-factor formula. It is important to realize, however,
that the four-factor formula itself contains some important inadequacies arising
directly from the physical picture involved. To begin with, the fast effect will
probably be dependent upon reactor size for small, close-packed reactors.. The fast
neutron leakage correction which is made to k. thus probably does not adequately
give the effect on k., caused by the loss of very fast neutrons. This effect, however,
should be relatively minor. )

The major inadequacy in the four-factor formula is the omission of nonthermal
fissions. In many reactors an appreciable fraction of the fissions is produced by
neutrons of epithermal energies. This will be particularly true in close-packed light-
water lattices and is even true to some extent in the more diffuse graphite or heavy-
water lattices. It should be noted, however, that the addition of resonance or epi-
thermal fission terms to the conventional reactor formulations must be accompanied
by associated corrections to resonance absorption in U2 (Art. 6.3). For reactors
containing a small percentage of epithermal fission, the inclusion of resonance fission
will cause relatively minor changes in calculated reactor characteristics. However,
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if epithermal fissions are a significant fraction of the total number of fissions, then the
conversion ratio and the reactivity may be appreciably affected by the different com-
petition between materials in the epithermal and resonance regions and the fact that
the epithermal value of 4 for U2 (and for the plutonium isotopes as well) is much less
favorable.

7 SPECIAL REACTOR PROBLEMS

In the application of many of the methods discussed in this handbook there are
special effects which may have important consequences in actual reactor operation.
A few of these effects will be discussed in this section in an effort to provide a better
understanding of the behavior of the nuclear systems involved.

7.1 Thermal Spectrum Effects

In many reactor calculations the low-energy neutrons are treated as a single energy
group of thermal neutrons. Cross sections for this group must be obtained by averag-
ing cross sections over the thermal-energy spectrum in order to arrive at physically
significant results. However, in such a treatment of the thermal group it is usually
necessary to take the characteristic temperature of the neutron distribution as that
of the moderator molecules with which the neutrons are in energy equilibrium. For
fairly dilute systems which are geometrically homogeneous this approximation is
entirely adequate. There are important cases where this treatment fails, however.
In heterogeneous geometries, where the lumps of fuel are of appreciable size compared
with the mean free path of a neutron within the lump, the effective neutron spectrum
impinging on the fuel atoms varies with position. The neutrons at lower energies
are more strongly absorbed, with the result that the remaining spectrum is composed
of neutrons with a higher effective ‘‘temperature.”” This phenomenon is usually
described as “absorption hardening’” and may be of importance in describing the
characteristics of heterogeneous reactors with large fuel elements. However, the
present trend toward small fuel elements (for engineering reasons) will avoid some
of the corrections due to this effect. Of course, clumped, small fuel elements (for
example, in a water-graphite or sodium-graphite reactor) will again exhibit appreci-
able neutron spectral hardening in the absorption in the fuel.

Perhaps a more important aspect of the absorption hardening problem arises in
both heterogeneous and homogeneous reactor lattices which contain strong thermal
absorption. This applies particularly to light-water lattices, where the relative

In these cases the absorption hardening effect is a characteristic of the entire lattice
rather than of a restricted geometrical region. The increase in the effective tempera-
ture of neutrons for a homogeneous reactor moderated with gaseous hydrogen has
been studied by Wigner and Wilkins?* and for a reactor with a moderator of heavy
elements by Wilkins.2 A useful approximation to the results of these calculations
has been suggested by Cohen?®, who found that the results were roughly of the form

KT
21128 + 1.36 2
VkT £2,
where ¥ = average velocity of hardened ‘“Maxwellian”’
mr = velocity corresponding to thermal temperature
ST = absorption cross section at vpr (assumed to be ~1/v)
£2, = scattering properties of the medium (assumed independent of velocity)

The resulting average velocity may then be used to obtain an effective kT for use in
the usual cross section averaging techniques. This empirical formula has been
checked roughly by the work of various experimenters. More recent work has been
concentrated on treating the problem of nongaseous moderators.2” To date results
of engineering significance have not been achieved for liquid moderators.
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7.2 Self-absorbed Cross Sections

The depression in neutron flux in the region of a high-absorption cross section has
been discussed elsewhere. One aspect of this problem, however, deserves special
mention. In the calculation of thermal utilization in a heterogeneous reactor the
various absorption cross sections are weighted by their geometrical average fluxes
to take into account the depression of the flux, for example, in a fuel rod. The
effective cross section used may be written (svhere ¢; is the average flux in material ¢)

}: (Na)ids
U A
Ztﬁe

1

In many calculations, however, it is inconvenient to perform such a space-wise flux
weighting as a part of reactivity calculations. This is particularly true in multigroup
work. Consequently, it is often desirable to regroup the above expression:

ENi(dqb)i
Zopp = T = ) Niwowps

[

The quantity Z.;; may be thought of as the effective absorption cross section in a
homogeneous material having the same over-all nuclear properties as the actual
heterogeneous region under consideration. The cross section e.rs; is often referred
to as self-shielded or self-absorbed.

An excellent example of this kind of thinking comes in the conventional treatment
of resonance escape. Uranium, which has a resonance integral of 240 barns in a
dilute homogeneous system, is self-shielded in the energy range of the absorption
resonances because of the strong absorption at the surface of the lump of neutrons at
resonance energy. The resulting effective resonance cross section, given by the
empirical formula, is usually only about 10 barns.

The Dancoff and Ginsberg self-shielding correction to the resonance escape inte-
gral,? which is mentioned in the discussion of resonance escape in this section, is
another form of self-absorption correction. It is effectively a correction to the surface
area of fuel element which is available to neutrons, but it arises primarily as a depres-
sion of the incident flux.

7.3 The Doppler Effect

Most neutron interaction calculations picture the collision process as being made
up of a neutron of some given velocity impinging upon a scattering or absorption
atom which is at rest. In actuality this picture is not correct, since the target atom
is in thermal motion in the atomic or molecular system of which it is a part. Because
there are components of this thermal motion in the direction of the incident neutron,
the effective energy of the neutron becomes a spread-out distribution about the actual
neutron velocity with respect to the average position of the target atom. This
phenomenon is entirely analogous to the Doppler broadening of lines i optical spec-
troscopy or to the shift of acoustic frequency due to a motion of the source of sound
with respect to the observer. For this reason it is referred to as a Doppler effect.

It can be shown, for a Maxwellian distribution of target atom velocities and a 1/v
cross section, that the motion of the target nucleus makes no difference in the effective
cross section of the interaction. Although this condition covers a very large fraction
of the cases of interest, certain cross sections which depart widely from 1/ will have a
noticeable change due to the Doppler effect. In particular, for resonances the effect
can be important. It may be shown that the area under a Breit-Wigner resonance
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is not changed by this target atom motion, so that in very dilute systems there is
again no reactivity change due to Doppler effect. However, in many cases of interest
the resonance peaks may be strongly self-shielded. The vibration of the target atom
{which lowers the effective resonance peak height but spreads it out, thus maintaining
the same area under the peak) cannot change the effective cross section inside the
resonance itself, since the absorption is already saturated. However, the widening
of the resonance will cause a widening of the region of strong capture, so that absorp-
tion in the skirts of the resonance will increase. This effect is referred to as “ Doppler
broadening’’ of the resonance. It is of importance to reactor operation.

In low-enrichment reactors and, indeed, in many others, resonance absorption is
less desirable than thermal absorption because of a lower probability of fission.
Hence Doppler broadening will reduce reactivity with increased temperature. That
is, Doppler broadening produces a negative temperature coefficient. In most reactors
this negative coefficient is in the range of 1 to 2 X 10~5(Ak/k)/°C. This is a fairly
small temperature coefficient in most systems. It is still important, however, since
it is prompt. In a reactor power excursion the removal of reactivity due to this
temperature coefficient does not lag, since there is no necessity for a heat-transfer
process to take place. Since fission energy is largely dissipated directly in the fuel
material by the passage of the fission fragments, the temperature of the fuel rises
immediately and the Doppler broadening takes effect promptly. Because of this,
although other temperature coefficients may be larger, the Doppler broadening is
important to reactor dynamics and safety.
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6-2 REACTOR CALCULATIONS

BY
J. R. Dietricht

Nomenclature
(See also Table 6 for special symbols used in Arts. 7 and 8)

Complete definitions of the symbols may be found in the sections referred to.
A = mass number
B? = buckling. The geometrical buckling of a medium is that which
satisfies the equation v2¢ + B2¢ = 0 in the medium with proper
boundary conditions. The material buckling is that which satisfies
the equation —L2B? — 1 + (k/p)P.(E,,B?) = 0 (Art. 5.3)
B’? = in the two-group representation, the ‘“transient” buckling (see
Table 6)
D = diffusion coeflicient (Art. 2.13)

E = neutron energy
F(E) = collision density per unit energy (Art. 3.2)
f = thermal utilization (Art. 9.2)
. G(z,z’) = diffusion kernel for thermal neutrons = flux at = due to unit source
at 2’ (Art. 2.25)
KI;"’ Ig,, J‘L’, Ql’} = Bessel functions
J = neutron current density (Art. 2.11)
k = Boltzmann constant
k = multiplication constant (infinite) (Art. 9.1)
kess = effective multiplication constant in a finite reactor (Art. 13.1)
k.. = excess multiplication factor (Art. 13.1)
L = diffusion length = +/D/Z, (Art. 2.15)
L; = slowing-down length (Art. 5.6)
! = prompt neutron lifetime (Art. 13.3)
£ = neutron leakage = fraction of neutrons produced which leak from
reactor
M = migration length = /L% + r (Art. 5.7)
n = neutron density, neutrons/cm3
N = number of nuclei per cm?
N = Avogadro number = number of atoms per gram atomic weight
p = resonance escape probability (Art. 9.4)
P(E,rr’") = finite slowing-down kernel (Art. 5.1)
P_(E,|r — 7’|) = infinite slowing-down kernel (Art. 5.2)
P.(E,B%) = three-dimensional Fourier transform of the infinite slowing-down
kernel (Art. 5.3)
q(E) = slowing-down density (Art. 3.2)
Q, ¢ = neutron source strength, neutrons/sec or neutrons/(cm?) (sec)
R = radius of a spherical or cylindrical medium

1 The author acknowledges with thanks valuable suggestions and review of parts of the manuscript
by D. H. Shaftman.
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= in the two-group representation, the ratio ¢y/¢. (sec Table 6)

]
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time variable

thickness of slab medium

absolute temperature

neutron velocity

volume

most probable neutron velocity in a Maxwell-Boltzmann dis-
tribution. (Art. 4.1)

albedo = ratio of current density out of medium to current density
into medium [if net current is into medium (Art. 2.3)]

fraction of fission neutrons originating from delayed emitters
(Art. 13.2)

fraction of fission neutrons originating from delayed emitters of
tth species (Art. 13.2) ,
extrapolation distance measured in transport mean free .paths
(Art. 2.22)

fast fission factor (Art. 9.5)

regeneration factor = average number of fission neutrons pro-
duced per neutron absorbed by fissionable material (Art. 9.2)
reciprocal of diffusion length (1/L)

reciprocal of diffusion length

reciprocal of slowing-down length (1/Ly)

mean free path of neutron = 1/2

decay constant of ith species of delayed-neutron emitter (Art. 13.2)
average cosine of scattering angle per collision of neutron with
scattering nucleus (laboratory coordinate system) (Art. 2.13)
average number of neutrons emitted per fission

average logarithmic change in energy per collision (Art. 3.1)
reactivity = kes/kess (Art. 13.1)

density, g/cm3 .

microscopic cross section, cm?/nucleus

microscopic absorption cross section

microscopic scattering cross section

cross section corresponding to most probable velocity in Maxwell-
Boltzmann distribution at temperature 7' (Art. 4.2)

macroscopic cross section, cm™1!

macroscopic absorption cross section

macroscopic scattering cross section

macroscopic . absorption cross section for thermal group of neu-
trons in two-group representation (see Table 6)

macroscopic slowing-down cross section for fast group of neutrons
in two-group representation (see Table 6, also Art. 5.6)

= Fermi age from source energy to energy F (Art. 3.4)

neutron flux density (Art. 1.3)

flux density of thermal neutrons

flux density of fast or epithermal neutrons
adjoint function (Art. 14.1) .

1 INTRODUCTION

1.1 The Fission Reaction

The basic process which makes possible the nuclear reactor is the fission of heavy
nuclei by neutrons. The products of a given single fission cannot be predicted, but
if many fissions are considered, an average equation for the reaction can be written
for a given fissionable isotope; for example,

fission

U2 + 1 neutron ——— fission product nuclei + » neutrons

+ other radiation + energy (1)
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The significant point for the present discussion is that the average number » of new
neutrons produced per fission is considerably greater than unity (actually about 2.5).
The fission chain reaction in a nuclear reactor is maintained at a steady rate if the
materials of the reactor are so arranged that exactly one of the » neutrons produced
by each typical fission interacts with another fissionable nucleus to produce still
another fission. If, on the average, less than one of the fission neutrons produces a
further fission, the neutron population of the reactor will decrease continuously and
the chain reaction will eventually die out. If, on the other hand, more than one of the
neutrons from the average fission produces further fissions, the neutron population
of the reactor will grow from generation to generation and the level of fission power
production in the reactor will increase continuously with time. Most problems in
reactor physics involve either the Jetermination of the necessary conditions for a
steady-state chain reaction (criticality conditions) or the determination of the rate
of growth or decay of the chain reaction (reactor kinetics) under given reactor con-
ditions. In either case, the statics or kinetics of the chain reaction is determined by
the statics or kinetics of the neutron population of the reactor. The problem is usually
solved by investigating the life histories and reproductive powers of “average’”’
neutrons. Evidently, then, the subject of reactor physics consists mainly of neutron
physies or, more specifically, of the physics of neutron transport and neutron inter-
actions with matter.

1.2 Fundamental Neutron Processes

The individual neutron can exist for only a short time as a free particle. It ceases
to exist as a particle when it enters the nucleus of an atom and becomes integrated
into the structure of that nucleus. .When such an event occurs, the neutron is said
to have been absorbed by the nucleus. The resulting modified nueleus may be stable
or may be unstable and emit other particles, including neutrons (as in the case of
fission), but in any case the original neutron is considered to have ceased to exist.
Aside from absorption, which ends its life, the neutron can interact with matter only
by making scattering collisions with the nuclei which compose the matter. These
interactions are called collistons because the free neutrons in a material medium are
normally traveling about, in the spaces between nuclei, at high velocity. The veloci-
ties may have been imparted to the neutrons when they were formed or may be the
velocities of thermal agitation. In a scattering collision the velocity of the colliding
neutron is usually changed, both in magnitude and in direction. If the neutron
imparts only kinetic energy to the body with which it collides, the collision is said to
be elastic. If it changes also the internal energy of the target body, the collision
is said to be inelastic.

1.3 Quantitative Specification of Interaction Rate: Cross Sections

Experimentally it is found that the number of interactions of any given type
(scattering, absorption, fission, etc.) which occur per second per unit volume of a
material containing neutrons depends, for a material of given nuclear species, only
on the number of nuclel per unit volume, the number of neutrons per unit volume,
and the effective neutron velocity. This relationship is formulated quantitatively
by supposing that each nucleus of a given species presents a target for a given type
of interaction of area ¢(v) em? to any neutron traveling with velocity v (the neutron
itself being considered a dimensionless point). On this basis a given neutron, in
the time interval Af, will travel a distance v A¢ cm and will experience interactions of
the specified type with all nuclei which lie within the volume o(v)v Af cm3. If there
is a uniform density of N nuclei per cubic centimeter, the number within this volume
is just No(v)v At. If the neutron density within the medium is n neutrons per cubic
centimeter, then the rate at which interactions of the specified type are oceurring
per unit volume is

No. of interactions/(cm?)(sec) = nvNa(v) (2)

The quantity nv is called the neutron flux. It is often represented by the single
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symbol ¢. Its dimensions are neutrons per square centimeter per second. The
quantity ¢ is called the microscopic cross section for the type of interaction under
consideration. Its dimensions are square centimeters per nucleus. Microscopic
cross sections are usually quoted in barns. The barn is a unit of area equal to 102+
cm? However, in the equations presented here the units of & are square centimeters
unless otherwise specified. The quantity No is called the macroscopic cross section.
It is the total target area for a given interaction which is presented to a neutron by all
the nuclei in a cubic centimeter of material; its dimensions are em? per cm3, or cm™1,
It is often represented by the single symbol Z.

The average number of interactions made by a neutron in traveling 1 cm is just
No = Z. Conversely, the average distance traveled by a neutron between inter-
actions is 1/2. This distance is called the mean free path for the type of interaction
under consideration and is usually designated by the symbol A.

As implied above, a microscopic cross section is assigned to each nuclear species
for each type of neutron interaction, and in general the cross section is a function of
neutron velocity (or, more precisely, of the relative velocity of the neutron with
respect to the interacting nucleus). Although from the standpoint of nuclear physics
the cross sections for the various types of interactions are not necessarily independent
of one another, for the purposes of neutron physics they may be and are considered
to be so.

Evidently the concept of the cross section is not a particularly useful one unless
the cross section is a property of the nucleus alone, unaffected by such considerations
as the molecular or crystal structure of the material in question. This condition is
met in most cases which arise in elementary reactor theory. When it is met, any
material may be regarded simply as a mixture of the various nuclear species present,
and the macroscopic cross section for any given type of neutron interaction is just
the sum of the macroscopic cross sections of all the nuclear species for that type of
interaction; i.e.,

Al

T = z Nioe = )2 No; 3
B i .

where N; is the number of nuclei of the 1th species per cubic centimeter of the medium,

pi is the number of grams of the ith species per cubic centimeter of medium, A4; is the

atomic weight of the 7th species, and N is the Avogadro number.

1.4 Sizes of Cross Sections and Other Important Dimensions

Scattering cross sections for neutrons of energies important in reactor physics
range from about 2 X 10724 to about 20 X 10-24 cm2. Absorption cross sections
cover a much wider range of values. For neutrons of thermal velocities the absorption
cross section of hydrogen is about 0.3 X 10724 cm?, that of iron is about 2 X 10724 cm?,
and that of the boron isotope of mass 10 is about 4 X 10721 em2. If the cross section
is visualized as circular in shape (i.e., as the cross section of a sphere), the radius cor-
responding to a cross section of, say, 10 X 10724 cm? is about 2 X 10732 ¢cm. The
average distance between nuclei in typical solids or liquids is very much larger, of the
order 10~% cm. That is to say, even though many nuclei are packed into each cubic
centimeter of material, the targets which they present to a neutron for interaction are
so small that the neutron may, in typical cases, travel distances of the order of centi-
meters between interactions. Consequently, one of the problems in maintaining a
neutron chain reaction is simply to contain a large fraction of the neutrons in the
reactor long enough for them to interact with the fissionable material. The wandering
away of neutrons before they can be absorbed is generally referred to as leakage from
the reactor.

Despite the relatively long distances traveled between interactions, typical neutrons
have such high velocities that they exist for only a short time before being absorbed.
The mean lifetime of a neutron in a reactor depends upon the reactor design but is
seldom more than 1073 sec. It is not possible to maintain a high density of neutrons
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in the face of such a short lifetime unless the rate of production of neutrons per uni$
volume by fission is very high, ie., unless the power production per unit volume is
very high. In the reactors built to date it has not been possible to achieve power
densities which give neutron densities greater than about 10° neutrons/cm?. Since
the atomic density in typical solids or liquids is of the order 102 atoms/cm?, it is
evident that the probability that a neutron will encounter an atomic nucleus is enor-
mously greater than the probability that it will encounter another neutron. Because
of this circumstance, that every free neutron in the medium acts independently of
all other free neutrons, the equations which describe the flow of neutrons in a medium
are linear. Some of the consequences of this linearity are discussed in Art. 2.25.

1.5 Conditions for the Chain Reaction

As stated in Art. 1.1, a steady self-sustaining chain reaction is maintained in a
nuclear reactor if the materials of the reactor are so arranged that exactly one of the
» neutrons produced by each average fission reacts with an atom of fissionable material
to produce another fission. The subsequent articles have indicated that two processes
compete with the fissionable nuclei for the free neutrons: absorption by nonfissionable
nuclei and leakage from the reactor. The condition for criticality of the reactor can
be written in terms of these two processes if two new symbols are defined:
£ = fraction of neutrons produced which leak from the reactor

No. of second-generation neutrons produced

~ No. of first-generation neutrons absorbed (by all materials present, including
‘ fissionable material)

The equation for criticality is, then,
k1l —8) =1 4

The quantity & can be stated in a more significant way if another symbol 7 is
introduced. The quantity 5 is the average number of fission neutrons produced per
neutron absorbed in fissionable material. In general 4 is less than ». The expression
for k becomes

No. of neutrons absorbed in fissionable material
total No. of neutrons absorbed

k=1

According to Eq. (4), k must be made relatively large and £ must be made relatively
small if the chain reaction is to be self-sustaining. The maximum value of £ is
attained if the reactor is made of pure, fissionable isotope. Such a reactor is of little
use as a power source, since no effective means is supplied for removing the heat which
is generated and converting it to useful work. Practical power reactors must contain
materials other than the fissionable isotope. These materials serve the purposes, for
example, of coolants, structural materials, and cladding to prevent the escape of
fission products from the fissionable material and, in some cases, to protect the fission-
able material from chemical attack by other materials. Furthermore, in many cases
fertile materials—isotopes which can be converted to fissionable isotopes by the
absorption of neutrons—are included in the reactor. Consequently, in many cases
the practically attainable value of k is not much greater than unity, and £ must be
made quite small in order to achieve criticality. This requirement is particularly
demanding if the reactor is to be fueled with the naturally occurring mixture of the
fissionable isotope U35 with the fertile isotope U238,

One way of decreasing £—of decreasing the probability that a neutron will wander
out of the reactor—is to make the reactor large. Another method, which is more
economical, is to include in the reactor a good moderating material: a material of
low mass number, low absorption cross section, and relatively high scattering cross
- section. The neutrons, in elastic collisions with the moderator nuclei, are slowed
down to relatively low velocities. Since absorption and fission cross sections are
much larger for slow than for fast neutrons, the moderation, or slowing down, of the
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neutrons increases their probability of absorption and hence decreases the leakage
probability. Most frequently, in a moderated reactor, the amount of moderator
employed is so large that most neutrons come into energy equilibrium with the thermal
agitation of the moderator nuclei before they are absorbed. Such a reactor is called
a thermal reactor.

Reduction of leakage is not, of course, the only way in which neutron moderation
affects the criticality condition. Since fission and capture cross sections vary with
neutron energy in different ways, the value of k which applies for a given mixture of
absorbing and fissionable isotopes depends upon the eénergy spectrum of the neutrons
present. This dependence is strikingly illustrated by the fact that whereas it is
quite feasible to construct a critical thermal reactor which employs as fuel the natu-
rally occurring mixture of U2 and U2, the value of k for a large block of pure natural
uranium (no moderator added) is considerably less than unity.

The methods outlined in this subsection apply primarily to thermal reactors,
although much of the basic material, as well as the specific methods of Art. 10, are
more generally applicable.

1.6 Outline of Subsequent Treatment of Reactor Physics

To summarize the foregoing, the behavior of a nuclear reactor is determined by the
migrations of neutrons, their slowing down, and the relative rates at which they are
absorbed by fissionable and nonfissionable isotopes. When these processes are such
that the neutron population of the reactor remains constant in time, the reactor is
said to be critical; the study of the conditions for criticality constitutes the subject
of reactor statics. The behavior of the neutron population when the criticality con-
dition is not fulfilled constitutes the subject of reactor kinetics. The remainder of
the subsection is devoted principally to reactor statics; further material on kinetics is
contained in Sec. 8-1.

The material in the remainder of this subsection may be summarized as follows:
Article 2 treats the flow of neutrons of uniform energy in a medium. Article 3 treats
the slowing down of neutrons to thermal energy, and Art. 4 describes their distribution
in energy after they have reached thermal equilibrium in the moderator. In Art. §
the criticality condition for a reactor is stated quantitatively as a partial differential
equation in terms of the fundamental processes covered in the preceding sections.
Article 5 amounts to a quantitative statement for the leakage £ of Eq. (4). Article 6
gives solutions for the critical reactor equation in simple geometries, and Arts. 7 and 8
outline methods of solution for the more complex cases of reflected reactors, Article 9
covers the evaluation of the constants which enter the reactor equation, including
the multiplication constant & [Eq. (4)]. This article covers both homogeneous cases
and the more corplex “lumped” cases. Article 10 outlines briefly the multigroup
technique which can be used for both thermal and nonthermal reactors. In Art. 11
typical computation procedures are illustrated by specific examples. Article 12 treats
the effects of lumped thermal-neutron absorbers, such as control rods or experimental
samples, in a reactor. Article 13,on noncritical reactors, is a very brief treatment of
reactor kinetics and concepts related to reactor kinetics. In Art. 14 relations are
given by which the reactivity effects of small changes in a previously eritical reactor
may be evaluated.

Throughout the subsection an attempt has been made to limit the coverage to those
items appropriate to handbook treatment. Individual computations which would
normally take more than an hour or two of work on a desk-type calculating machine
or a slide rule for their execution are considered to be beyond the scope of a handbook.
The treatment of neutron migration has been limited to the diffusion approximation.
In general, where specific approximations are used, they are noted. A complete
discussion of the implications of such approximations and of their range of appli-
cability is evidently beyond the scope of the subsection. Finally, although an effort
has been made to arrange the topics in a logical sequence and to impart as much
physical understanding as can be done in a brief space, the presentation is obviously
not intended to approximate a logical and integrated development of reactor theory.
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Tt is intended, rather, that the subsection constitute a convenient reference for those
elementary formulas and procedures which occur frequently in the course of reactor
computation.

2 DIFFUSION OF “MONOENERGETIC” NEUTRONS

Conceptually, the material of this article applies to the diffusion of monoenergetic
neutrons; practically, it is applied to groups of neutrons whose energy spread is narrow
enough and predictable enough that averaged values of properties of the medium
may be used. The most common case is that of thermal neutrons. The averaging
of diffusion properties over the thermal-energy spectrum is treated in Art. 4.

2.1 The Diffusion Equation

2.11 Current Density. The current density J is the nel number of neutrons
flowing in unit time through a unit area normal to the direction of flow.

: J = —Dgrad ¢ (5)
or, in Cartesian coordinates,

J=—D(i3‘£’ % 41 22) ®)

dzr Yy 0z

where D is the diffusion coefficient and 4, 7, and & are, respectively, the cosines of the
angles between the z, y, and z directions and the normal to the plane across which
current density is being measured. That is to say, the net current density across the
plane has directional components J, Jy, and J,, given by

J.=-p% g -_-p% 5 -_-p%
) ox ay 9z
Tach component (e.g., J.) of the net current density is the difference between a for-
ward current density component J., and a reverse current density component J_,
given by
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with simjlar expressions for the other directions.
2.12 Neutron Leakage Rate. The rate at which neutrons leak from unit volume
in a diffusion medium is

I

Neutron leakage/(unit vol)(sec) —-DVie
a2 9? 92
e 0 0
ox? ay? 92
in cartesian coordinates where V2 is the Laplacian operator (see Sec. 3-2 for other coordi-
nate systems). .
2.13 Evaluation of Diffusion Coefficient D. If experimentally determined values
of D are not available, the following relation (from transport theory) may be used:
b= 4 21 T, & ©®
3z — j (1___“ Ho Mo )
( o) 53 + T 1 - +

8

where = and I, are the total and absorption macroscopic cross sections, respectively,
and fo is the average cosine of the scattering angle per collision (stationary coordinate
system).
If the medium absorbs only very weakly, the expression becomes -
- —_L . )\tr
323(1 - ﬁo) 3

where A is the transport mean free path.

(10)
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In reactor systems, scattering of neutrons is essentially 1sotroplc in the center of
mass coordinate system, and for this condition
2
fip = COS ¥ = — i1
34

where ¢ is the scattering angle in the stationary (laboratory) coordinate system and 4
is the mass number of the diffusion medium.

2.14 Neutron Balance per Unit Volume—The Diffusion Equation. The rate of
change of neutron density n (= number of neutrons per cubic centimeter) is given by

nbaaatant=2d al HRAIRALS P A el

i

rate of leakage into unit vol — rate of absorption /unit vol

—+ rate of production /unit vol
Dv2¢ — Zs + S() (12)

where S(r) is the effective source strength, or effective rate of production of neutrons
per unit volume. The guantity S(r) is smaller than the actual source strength by the
factor {1 — 44(Z4/Z)] because of the breakdown of diffusion theory near the source.

2.15 Source-free, Steady-state Diffusion Equation; Diffusion Length., In any
portion of a medium which contains no sources, the steady-state diffusion equation
becomes

D V2¢' — Zetp = 0
generally written Vip — x2¢p =0 (13)

where »? = Z,/D. The reciprocal of x?, D/Z,, is called the diffusion area and is
represented by the symbol L?, which can be shown to be one-sixth the mean square
distance (crow flight) traveled by a neutron in a diffusion medium between the time
of its birth and the time of its absorption. The square root L of the diffusion area
is called the diffusion length.

The diffusion equation, when written in the form of Eq. (13), is frequently referred
to as the wave equation.

2.2 Solution of the Diffusion Equation

2.21 General Considerations. The solution of the steady-state diffusion equation
in an infinite medium can be written out formally, for the general case of an arbitrary
distribution of sources, by use of the diffusion kernels (see below). The solution for a
finite medium is difficult unless the source distribution and the boundaries display a
reasonable degree of symmetry. A few useful cases of relative simplicity are treated
in following paragraphs. Other cases are covered later (Art. 12) in connection with
lumped absorbers in the reactor. Solutions for a great many cases are given in a
paper by Wallace.t

Before the solutions can be given, it is necessary to consider the boundary conditions
which apply at the edges of finite media. The diffusion equation does not describe
accurately the flux behavior near boundaries. If, however, appropriate boundary
conditions, derived by transport theory, are applied, the solutions of the diffusion
equation will describe the distribution of flux adequately in all parts of a finite medium
except those within about one mean free path of the boundary. The conditions for a
number of cases are given below.

2.22 “Black” Boundaries. A boundary is called black if no neutrons whlch Cross
the boundary from the medium return to the medium. External boundaries between
the medium and vacuum are black. Boundaries between the medium and very strong
absorbers, either internal or external, may often be corsidered black for practical
purposes, the criteria being that the absorber be thick enough to reduce the neutron
flux practically to zero in its interior and that =, >> 2, in the absorber. Evidently,
the neutron flux in the medium will decrease as the boundary is approached. The
boundary condition depends on the geometry of the boundary and on the transport

t Superscript numbers refer 1o References at end of subsection.
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mean free path in the medium. [t is generally stated either as the value of the
logarithmic derivative of the flux at the boundary

L -
¢d;1; boundary 'Y>\tr

(14)

where z is the coordinate normal to the boundary (the positive direction being from
medium to boundary) and v is a number characteristic of the shape of the boundary,
or as the extrapolation (or augmentation) distance e:

€ = YN (15)

The extrapolation distance is defined as the distance beyond the boundary at which
the flux would become zero if its normal derivative at the boundary were extrapolated
linearly. The two methods of statement of the boundary condition are equivalent.
A convenient way of applying the condition of Eq. (15) is simply to set up a fictitious
boundary (the extrapolated boundary) at a distance ¢ beyond the true boundary and
require that the neutron flux vanish at this extrapolated boundary. This boundary
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F1c. 1. Estimated values of linear extrapolation length for “black” spheres and cylinders.
(Reproduced from: B. Davison and S. Kushneriuk, Linear Extrapolation Length for a Black
Cylinder, National Research Council of Canada, Division of Atomic Energy, MT-214,
March 30, 1946.) :

condition is not strictly -equivalent to that of Eq. (14) (since the solution of the
diffusion equation is not, in general, linear between the real and extrapolated bound-
aries), but it is adequate for almost all practical cases. Values of v for various geom-
etries are given below. These apply for media of low absorption (strictly, for non-
absorbing media).

Plane Boundary. v = 0.71.

Internal Cylindrical and Spherical Boundaries. The extrapolation distance varies
with the curvature; v ranges from 44 for vanishingly small radius to 0.71 for infinite
radius. Figure 1 shows the probable dependence of v on radius of black absorber
as estimated by Davison and Kushneriuk.

2.23 “Gray” Boundaries. A strong absorber which yet does not absorb all the
neutrons incident upon it is often referred to as a “gray’’ absorber. Diffusion theory
does not describe the neutron flux behavior accurately in the vicinity of such an
absorber. Kushperiuk and McKay have derived extrapolation distances, by approxi-
mations to transport theory, for “gray’’ cylinders embedded in nonabsorbing, scatter-
ing media (Fig. 2). These extrapolation distances may be used with diffusion theory,
in the same way as the black boundary extrapolation distances, to determine the flux
distributions in the scattering medium.

2.24 Boundaries between Nonabsorbing (or Weakly Absorbing) Media. The
boundary conditions between two diffusion media are

1. The neutron flux is continuous across the boundary.
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2. The neutron current density in a dlrectlon normal to the boundary is continuous

across the boundary.

If the two media are nona.bsorbmg, the presence of the mterface does not affect

the adequacy of the diffusion approximation.

If either or both of the media absorb,

higher order approximations to transport theory are needed to deseribe the neutron

distribution adequately.?
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Fra. 2. Linear extrapolation length for a
“gray’ purely absorbing cylinder in a non-
capturing medium. The unit of length for
both -radius of cylinder and extrapolation
lerigth is the mean free path in the sur-
rounding medium. a is the radius of the
cylinder, and « is the ratio of macroscopic
absorption cross section in cylinder to
scattering cross section in the surrounding
mediurm. (Reproduced from S. A. Kush-
nertuk and C. McKay, Neutron Density in an
Infinite Non-Capturing Medium Surround-
ing a Long Cylindrical Body which Scatters
and Captures Neutrons, Atomic Energy of
Canada Limited, CRT-566, July, 1954.)

Nevertheless, the diffusion approximation, with the above

boundary conditions, is used in many re-
actor calculations when the absorption is
not extremely large.

2.25 Solutions of the Steady-state
Diffusion Equation in Infinite Medium—
The Diffusion Kernels. The steady-state
diffusion equation is

Dvigp — Z.¢ + 8(r) = (16)
The equation is linear. Physically, this
is because the mutual interactions be-
tween free neutrons are completely negli-
gible at practical flux densities. Because
of the linearity property, any superposi-
tion of solutions is a solution of the equa-
tion, and the flux distribution resulting
from any arbitrary distribution of sources
is just the superposition of the flux distri-
butions due to the individual sources.

It is therefore useful to tabulate the
flux distributions due to unit delta-func-
tion sources of various geometries (point
sources, line sources, etc.) in an infinite
medium. The flux distribution for such
a unit source is called the kernel for the
source. It will be denoted by G(u,u’).
The quantity G(u,u’) is just the flux at »
due to unit source at u’. The flux ¢(u)
at u due to an arbitrary distribution of
sources S(u’), defined in the volume V in
an infinite medium, is

P(u) = ,/V Sw)Gw,w') dV’ - (A7)
where the differential dV’ signifies that

the volume integral is to be taken over
the source distribution. The kernels

G(u,u’) are the solutions of the steady-state source-free diffusion equation

Dvi¢ — Zep =0

in an infinite medium, the single source being considered a separate region of infini-

tesimal extent.

throughout the infinite medium except inﬁnitesimally near the source.

The solutions apply (within the limitations of diffusion theory)

Kernels for a

number of source geometries are given in Table 1.
2.26 Solutions of the Steady-state Diffusion Equatxon in Finite Media with

Localized Sources.

If the geometry of the medium (and of any sources which may

exist in the medium or at its boundaries) can be described by a single coordinate, the

solutions are simple.

Table 2 gives the general solutions for such one-dimensional

cases in the usual geometries, as well as the solutions of some typical specific problems.
The three-dimensional case will be illustrated by a problem in rectangular coordi-
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Table 1. Diffusion Kernels in Infinite Media
Kernel = neutron flux
Source Symbol for Source strength
geometry kernel and location atr (orat z, as the
case may be)
. , e xlr—r]
Point Gaul(r,r’) { neutron/sec at r —
4xD|r — r’|
Plane Gpi(z,2’) | | neutron/(cm?)(sec) over a e xiz2'|
plane of infinite extent at z’ 2xD
Line of infinite length Gi(r,r’) { neutron/(cm})(sec¢) overa line ’ ,
of infinite length, in z direc- D Ko(xlr — ')
. /
tion, at r The vectors r and r’ are both
taken from the z axis, in a
plane normal to the axis
Spherical shell Qs(r,r") I neutron /sec per shell of 1 B ,
radius ', with center at origin | 87D (exlr=r'l — gmxlrte'ly
Cylindrical shell of infi- Gel(r,r') { neutron /sec per shell of 1 , ,
nite length radius v’ and unit length, with | 2, p Ko(xr)Io(xr')r > 7
center at z axis
’2-‘":1_) KoGer) To(xr)r < '

|r — r’| denotes the absolute value of the vector difference of r and 1. Is and Ky are the modified
Bessel functions of the first and second kinds, respectively, of zero order.

nates, for which the diffusion equation in the source-free regions is

D _ e

922 e

2 - 2
2o | 0% ~0

dx? oy? (18)

If the medium consists of a single material, the equation may be assumed to be
separable and to have a general solution of the form

¢ =X@YZQE)

where X is a function of z alone, ¥ a function of y alone, etc. X, Y, and Z are then

the solutions of the equations
d?Z
dz?

2
CY gy =0

=0
dy?

+2Z =0

where «, 8, and y arc constants chosen to fit the boundary conditions plus the addi-
tional condition

a? + B+t =0 (19)

The rectangular prism is a typical problem, and is the arrangement frequently used

for the measurement of diffusion length. If the prism is infinite in the z direction and

is bounded in the z and y directions by the planes z = 0, a; y = 0, b; and if the source’
of effective strength @ neutrons/sec is located at the point (z’,y’,2), the above proce-

dure leads to the solution

w0 ®

¢(z,y,2) = bmn(2z) Sin @c—?- sin 2 (20)
m=1mn=1
14 !
where $(2)mn = E;%; sin m;rz sin Y exp (~vmalz — 2'])
2 2
and 'Ymn2 = x? + (M) + (H)
a b



Table 2. Solutions of Steady-state Diffusion Equation in Finite One-dimensional Media with Localized Sources

(For x > 0)
Geometry of Expanded form of General Typical specific . "
medium diffusion equation solution problem Solution of specific problem
Slab, infinite in y and | d2¢ . ¢(x) = A sinh xx | Extrapolated slab boundaries at z = —a Q sinh x(a 4+ 2’) . ,
z directions dzr xp =0 + Bcosh xz | and z = +a; infinite plane source of | #(®) = D sinh 2xa sinh x(a — z) forz >z
uniform strength Q@ neutrons/(cm?) (sec) Q@ sinh x(a — )
atz = 2 #(z) = —EE_—X—ahz—sinh x(a + z) for z < z'
xD  sinh 2xa
Net diffusion current of uniform density J J .
neutrons/(em?)(sec) is lowing into slab | #(x) = D oosh na sinh x(a — z)
. at z = 0; slab extends to extrapolated X2 eosh xa
o 2d boundary z = a o) = Q sinh x{(a — »)
> Sphere d_i’ + = ad __ a2 = 0] ¢() = Point source of strength Q neutrons /sec 4xD sinh xa r
=) dr? rdr 4 sinh xr ) at center of sphere of extrapolated [sinh xla — 1)]
—_— radius = a J
T Spherical shell, of extrapolated outer o) = s
. +B cosh xr . radius = a, inner radius = b; diffusion D [sinh x(a — b) _ x cosh x(a ~ b)
r current of uniform density J neutrons/ b2 b
are 1 ds (em?)(sec) flowing into shell at r = b
Infinitely long cylinder | s + - == — x*¢ = 0| ¢(r) = ATo(xr) Cylindrical shell, of extrapolated outer | ¢(r) = Alo(xr) + BKo(xr)
drr = rdr + BEo(xr) radius = a, inner radius = b; diffusion | where
current of uniform density J neutrons/ 4 J Ko(xa)
(cm?)(sec) flowing into shell at r = b =D Kolea) T1(x5) + Totea) B1xb)
_ i Ta(xa)
. xD Kolxa)I1(xb) + Io(xa)K\(xb)

A and B are arbitrary constants, to be chosen to fit the boundary conditions.
D is the diffusion coefficient for the medium; x? = Z./D = 1/L? = 1/diffusion area for the medium.
Ia and Ko are the modified Bessel functions of first and second kinds, respectively, of zero order; I1 and K are the modified Bessel functions of first order.
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For large values of [z.— 2| all terms of the summation except those for which m = 1,
n = 1 become negligible, and the solution becomes

2 2\ §
¢o(z,y,2) = A sin T sin =¥ exp [— (uz +Z 4+ 7r—) le — z'l] (21)
a b a®  b?
2Q . 7wz’ Ty’

h = ; L gin =L
where Do T e T T sin -~ sin —
For this case the quantities »?/a? and »%/b* are called the bucklings in the x and y
directions, respectively.

If the prism is finite in the z direction, bounded by the planes z = 0, ¢, the solution
is again-that given by Eq. (20), but withf{

r 7 ’
¢ @) mn = 40 - sin 27 gin PTY. M sinh ymn(c — 2) forz > 2" (22)
abDymn a b sinh vymae
! ’ 3 —
(2)mn = 49 sin 7% gin 2TV w sinh ymn2 forz < 2"
abDymn 3 b sinh ymac ]

and ymn as before.
2.3 The Albedo}

If neutrons are incident on the boundary of a source-free medium, a large fraction
of the neutrons which cross the boundary into the medium may, after one or more
collisions, be scattered back across the boundary and out of the medium. The albedo
8 is a reflection coefficient which characterizes this process quantitatively. It is
defined as the ratio of current density out of the medium (negative) to current density
into the medium (positive):

=[{= _ [ (/4 + (D/2)(34/02)
6 . [J+]boundary [(¢/4) — (D/2)<a¢/ax)Jbuundary (23)

where z is measured along a vector normal to the boundary and directed into the
medium.

Within the limitations of diffusion theory, the albedo is characteristic only of the
geometry and the material characteristics of the medium. Albedos for a number of
geometries are given below.

2.31 Infinite Medium with Plane Boundary:

1 — 2xD
= 24
P 1+ 2xD @4
For the case of xD < 1, ‘
B8=1—4xD (25)

If the scattering is isotropic also, »D = (1/ /3) V/Z./Z.
But =/Z, is just the total number of collisions (N) made by the average neutron
in the medium before absorption, and

p=1— C@6)

This relationship aids in the physical understanding of the neutron ‘‘reflection”
process,

Within the framework of diffusion theory only an isotropic distribution of velocities
of incident neutrons can be considered. In many practical cases the distribution is

+ The solution is valid regardless of which dimension of the prism is taken as the z dimension, i.e.,
regardless of the dimension in which the sinh term is used to describe the distribution. However, con-
vergence of the series is good only if the longest dimension is taken as the z dimension.

t See Ref. 3. See also Art. 4.4 of Sec. 6-1.
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not isotropic (e.g., a neutron beam incident on the medium). The albedo as derived
from more detailed considerations of neutron transport is, for the case of low absorp-
tion and isotropic scattering,

1 .
g=1—— for glancing incidence (27)
/N
B=1-— 29078 for normal incidence (28)

/N

The albedos below, for other geometries, apply for isotropic incidence only.
2.32 Slab of Finite Thickness a:

_ 1 — 2xD coth xa

b= 1 4+ 25D coth »a (29)
2.33 Sphere of Radius a:
1 — 2xDleoth xa — (1/xa))
= )
B 1 + 2xD[coth xa — (1/xa)} (30)
2.3¢ Infinite Medium Surrounding Sphere of Radius a:
g = L= 2Dl + (1/a)] 1)

1 + 2D[x + (1/a)]
2.36 Spherical Shell, Inner Radius a, Outer Radius b; Neutrons Incident from

Inside:

_ 1 — 2D[x coth x(b — a) + (1/a)]
1 + 2D{x coth (b — a) + (1/a)]

8 (32)

3 SLOWING DOWN OF NEUTRONS

The kinetic energy of fission neutrons varies over a wide range; but it is in all cases
high compared with thermal energies. In the course of their lives in a reactor such
neutrons will, in general, lose energy by nonabsorbing collisions with nuclei of the
reactor materials. The energy spectrum of neutrons in a typical thermal reactor
will consist of a slowing-down spectrum which describes the distribution of energies
among the neutrons being slowed down, plus a thermal spectrum of neutrons which
have come into equilibrium with the thermal energy distribution of the reactor atoms.
The slowing-down distribution will be described in this section, and the thermal dis-
tribution in Art. 4.

For very fast neutrons the slowing-down collisions may be either elastic or inelastic.
The elastic process is by far the more important one in determining the effective
behavior of neutrons over the entire energy spectrum in a thermal reactor and is the
process which will be considered here. The effects of inelastic slowing down can,
however, be included in the constants, such as r (Art. 3.4), which describe the slowing-
down distribution in the reactor.

3.1 Loss of Energy in a Single Elastic Collision

The loss of energy in a single collision with a stationary nucleus depends upon the -
mass number of the scattering nucleus and upon the angle ¢ between the original
direction of the neutron velocity and the direction after the collision. It is useful
in deseribing the mechanics of elastic collisions to employ the center of mass coordi-
nate system. The origin for this system is at the center of mass of the neutron plus
the nucleus with which it is colliding. Thus the center of mass (or () system moves
at constant velocity with respect to the laboratory (or L) coordinate system, and the
collision always takes place at the origin of the C system. The scattering angle 6
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in the L system is related to the scattering angle ¢ of the C system by
1+ 4 cos ¢

\/l + 42 4+ 24 cos ¢

where A is the mass number of the scattering nucleus.
The ratio of the neutron energy after collision to the energy before collision is

cos 6 =

(33)

E _1+4r (1 —J) . .
o 9 -+ 3 cos ¢ 34)
(A - 1)2
where = (A +1 (35)

The minimum value of E/E,occurs for ¢ = 180° (head-on collision) and is equal to 7.
For neutrons in the energy ranges important for thermal reactors, the assumption is
usually made that all values of cos ¢ are equally probable (the scattering is spherically
symmetric in the C system) and hence all values of E/E, from 1 to r are equally
probable. The average logarithmic change in energy per collision £ is then

E r
¢ nEo +1—1‘

Inr (36)

The limiting values of £ for 4 = 1 (hydrogen) and A = = are, respectively, 1 and 0.
If the moderator contains n different species of nuclides, of scattering cross section
%, and average logarithmic energy decrement per collision £;, and if all the scattering
cross sections are either independent of energy or vary in the same way with energy,
then the average logarithmic energy decrement per collision % for the mixture is

E= it ; @7

Lethargy. Frequently, in treating the slowing down of neutrons it is convenient to
employ a dimensionless variable, called the lethargy, in place of the energy variable.
The lethargy u is defined by:

Ey

=1
u IlE

where E, is the initial energy of the neutron and F is the energy at the instant in
question. The quantity #, then, is just the average change in lethargy of a neutron
per collision. : -

3.2 ' Collision and Slowing-down Densities B

3.21 . The slowing-down density ¢ in a medium is defined as the number of neutrons
that slow down past a given energy E per cubic centimeter per second. In the general
case, ¢ is a function of energy and position. In an infinite mediumn which absorbs
only thermal neutrons and which is supplied by a uniform source of € fast neutrons
per cubic centimeter per second of energy F, the slowing-down density is constant
and equal to @ at all energies from thermal to E. )

3.22 The collision density per unit energy, F(E), is simply the number of collisions
made by neutrons with atoms of the medium per cubic centimeter per second per
unit energy interval at the energy E. If the neutron flux per unit energy interval
at energy E is ¢(E) and the scattering cross section is Z,(E), then the collision density
is .

F(E) = Z.(E)¢(E) ‘ (38)
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In an infinite medium which absorbs only thermal neutrons, the collision density as a
function of energy is given by

REACTOR PHYSICS

Q

F(E) == 39

' (E) % (39)

if the medium is hydrogen. For moderators other than hydrogen the collision density

is

Q

F(E) =X 40

() i5 (40)

for all energies E below about r3E, [see Eq. (35)]. For higher energies the variation
of F(E) is more complicated; it is discontinuous at the energy rE, because of the cir-
cumstance that above this energy neutrons are present which have suffered only one
collision (as well as those that have had multiple collisions) whereas below rE, all
neutrons have had at least two collisions.*

Equation (40) applies for a moderator composed of a mixture of atomic species
provided it is possible to write an average logarithmic energy decrement f [see Eq.
(37)] for the mixture. The neutron flux ¢(E) can be obtained from Egq. (39) or (40)
by use of Eq. (38).

_FE) _Q 1

Z(E) EEZ(E)

Thus, over any energy range for which Z, is constant, the flux is just proportional to
1/E. This condition holds approximately for many moderators over the resonance
energy region.

(41)

3.3 Spatial Distribution of Slowed Neutrons

If there is a point source of fast neutrons in a uniform moderating medium of infinite
extent, the slowing-down density at any energy below the source energy will have some
spatial distribution which is spherically symmetrical about the source and which is

otherwise characteristic of the energy and

o.i0 pof the moderator. If we are concerned
with the calculation of a thermal reactor,

08 we are interestedrin the slowing-down den-
f\ sity at some energy just above thermal.

IC] 06 / \ Each fission in such a reactor is a source
:‘f‘ - / \ of fast neutrons. If we know the char-
S acteristic distribution of slowing-down
< .04 N density into the thermal-energy region
/ \ from such a fast source, then we can treat

02 each fission as a distributed source of ther-

N mal neutrons which diffuse according to

o the laws of Art. 2 until they produce fur-
ther fissions to maintain the chain reac-

0 5 10 15 20 25 30

CENTIMETERS FROM SOURCE
Fic. 3. Flux of 1.44 ev neutrons from a point

source of 1 fission neutron per second in an-

infinite medium of H:Q. Fo(r) is the fluxin
neutrons/(cm?) (sec)(ev). (Reproduced from
J. E. Wilkins, R. L. Hellens, and P. F,
Zweifel, Status of Ezperimental and Theo-
retical Information on Neutron Slowing
Down Distributions in Hydrogenous Media,
Geneva Conf. Paper A/Conf.8/P/597, June
30, 1955.)

tion. By the principle of superposition
(see Art. 2.25), the effects of all the sources
can be added up independently to give the
reactor equation. The method by which
this is done is treated in Art. 5. We con-
sider here the methods of describing the
slowing-down distribution.
Figure 3 is a plot of the measured
slowing-down density distribution, at the
<indium resonance energy, from a point
fission source in water, (the indium reso-

nance energy is a convenient one at which to make the measurement; the distribution

is nearly the same as that just above thermal).
the slowing-down density (see Art. 2.25) for the case in question.

This curve is actually the kernel of
If such kernels are
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to be incorporated into a reactor equation, it is evidently desirable to describe them by
some relatively simple equation. Furthermore, it is desirable to be able to compute the
distributions from microscopic data. - It is by no means obvious that the distribution
should be describable by a simple mathematical function; indeed, in the general case,
it is not. The Fermi approximation, discussed below, gives a simple description
which is satisfactory for many cases. For an extensive treatment of the slowing-
down distribution by more rigorous methods, sece Refs. 5 and 6.

3.4 The Fermi Age Approximation

This approximation is valid only if the scattering mean free path does not vary
appreciably within any energy interval E to E’, where E' = rE [see Eq. (35)], and
if the number of collisions experienced by the neutron in reaching the energy of interest
islarge. The approximation is therefore quite poor for media in which the moderation
is mainly by hydrogen or deuterium, but it is widely used for moderators of higher
atomic weight than these. The approximation does not describe properly the slowing-
down distribution at distances very far from the source, but at such distances the
slowing-down density is too low to be important in most reactor problems.

3.41 The Fermi Age. If we have source neutrons produced at energy E, and are
interested in the distribution as a function of E for all energies E less than E;, we
define a new variable, the Ferms age +, such that

_ (B D(E) dB
® - [ 55 (42)

where D(E) is the diffusion coefficient (see Art. 2.13), Z, is the macroscopic scattering
cross section, and £ is the logarithmic energy decrement per collision. The slowmg—
down densmy g then becomes a function of space and of 7, and its distribution is given
by the Fermi age equation.

3.42 Fermi Age Equation:

vgle) = 280 43)

for all values of + > 0 (i.e., for all energies less than E,). The initial condition is

a‘1‘”)+S<r> (44)

lim vig(r,r) =
0
where S(r) is the source strength of neutrons of r = 0 (i.e., energy E,); V2 is, of course,
the Laplacian operator.

Note that r, although referred to as the age, has the dimension (length)?. It can
be shown to be one-sixth the mean square (crow flight) distance traveled by a neutron
from the time of its emission by the source until it reaches the energy E, which cor-
responds to the value of . An alternate statement is that 7 is one-sixth the second

spatial moment of the slowing-down density where the second spatial moment (7)
is defined by

/;)w r2q(r,r)dnr? dr

/;w q(r,7)}4nr? dr

q(r,7) being the slowing-down density from a point source at the origin. TEquation
(42) can be used to compute r for a mizture of elements provided the average value
[Eq. (37)] is used for &.

3.43 Solutions of the Age Equation. The Slowing-down Kernels. The solution
of the age equation.for a unit point source of monoenergetic neutrons at ro in an
infinite medium, the neutrons being emitted at an energy corresponding to r = 0, is

_ 1 —|r — 1|2
qlrr) = @ P ( ) (46)

Ti(r) = (45)

4r
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This solution is the point kernel for the slowing-down density. It is a displacement
kernel; the slowing-down kernels for a distribution of sources may be superimposed
to give the net slowing-down density, as discussed for the diffusion kernels in Art. 2.25.

Note that the slowing-down density has the same spatial distribution as the Gauss
error curve. In a given moderator containing a single point source, the slowing-down
density is always highest near the source; it falls off more or less rapldly with distance
according as 7 is small (high energy) or Iarge (low energy).

The kernels for the slowing-down density in an infinite medium with various source
geometries are given in Table 3.

REACTOR PHYSICS

Table 3. Gaussian Slowing-down Kernels in Infinite Media
The kernel gives the slowmg-down density, at pomt r (ot z as the case may be) and age r, produced by
unit sources of neutrons of age ' located at point * (or 2’). The flux ¢(r 7) can be obtained by dividing
the kernel by the slowing-down power £Z4(r), provided the value of 7 is one which corresponds to the
slowing-down distribution (i.e., provided the neutrons are not thermalized).

Source strength
and location

Source
geometry

Symbol for

kernel Kernel .

i neutron/sec at
P

Point P(r,rr',7") Ir — r'f2

P |:— 4(r — 1)
[4r(r — )Pt

je — |2

exp [ T 4 =)

[4x(z — )]

]

| neutron of age
7’ /(cm?) (sec)
over a plane of
infinite extent at

2

Plane Poi(z,r;2',7")

Line

Spherical
shell

Cylindrical
shell

Pu(r,¢,7507,¢',7")

Polr,rir',7")

Pe(r,rir',1")

1 neutron of age
7’ /(cm) (sec) over
a line of infinite
length, at »’, ¢/

| neutron of age
7’ /sec per shell of
radius /, with
center at origin

| neutron of age
7/ /sec per cm
length of infi-

| darr!

exp [

o2
o [ - 2 ]
4r(r — 77)
where p2 = 72 -+ 7’2 — 2rr’ cos (¢ — @)
[~ =] [ et
1 lexp -4 PTG T

4x(r — 1)}’

] (z[f - 7'1)

!

4r — 1)
4a(r — 1)

nitely long shell,
of radius 7/, with
axisatr = 0

3.44 Slowing-down Distribution from Fission Source. If the number of neutrons
emitted per second between energy E’ and E’ 4+ dE’ by a point_ source at the origin,
in an infinite medium, is F(E’) dE’, then the slowing-down density from the source is

[ e~ dE
drr®) = |, {4nlr(B) — ()}

Similar equations will hold for the other slowing-down kernels.

Evidently, the slowing-down density at any energy E, as given by Eq. (47),isno .
longer Gaussian, Nevertheless, in reactor theory, it is often the practice to define
an effective age 7, which can be used with the point kernel for a monoenergetic source
[IEq. (45)], to describe the neutron balance in the reactor. The proper 7 is, however,
a function of the size of the reactor (or, more precisely, of the buckling B?). . For very
large reactors (small buckling) the effective value of r for the slowing-down density
just above thermal energy is given by .

(7

7= r(E’ En)F(E") dE’ (48)

S
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where S is the total source strength. In other words, for this case, one uses just the
arithmetic mean of the ages of all the fission neutrons, from their source energy to
thermal.

3.6 Slowing Down with Absorption

3.561 Resonance Escape Probability. In an infinite medium containing a uniform
source of high-energy neutrons of strength Q(¥,) neutrons/(cm3) (sec), the slowing-
down density ¢(E) at some lower energy E will be just equal to Q(E,) if there is no
absorption. - If there is absorption, the slowing-down density at E will be some
fraction p(E) of the source strength. This fraction is called the resonance escape

probability:
q(B) = p(E)Q(Ev) (49)

For a homogeneous medium of total macroscopic scattering cross section =,(E), total
absorption cross section Z4(E), and effective logarithmic energy decrement (E), the
resonance escape probability is calculated by

[ (B 2. (B") dE’
pE) = exp { st rsmn ) 60

The expression is correct if all the moderation is by hydrogen. It is valid for modera-~
tors of mass number greater than 1 if all the absorption is by a single narrow resonance
or by a number of narrow resonances provided in every case the energy of a resonance
is higher than that of the next lower resonance by a ratio which is at least as great
as (1/r)% or (1/7)* [Eq. (35)].

If the moderator is of mass number greater than 1, and if the absorption cross
section and the scattering collision density vary only slowly with energy, the resonance
escape probability is given approximately by’

_ _ B oz, -dE’)
p(B) = exp ( /E IZ, + vZ, B 61)

—_ p— —_ 2
where , = L= —re—r1e/2 (52)

1 —7r—re

and c=In —1 (53)

Although many cases arise in which Eqs. (49) and (50) do not apply rigorously, they
are used extensively in practice and give reasonably accurate results for most cases,
particularly if the resonance absorption is not large.

It should be pointed out that in those cases where the absorption is by resonances,
the above expressions will give very poor results unless the absorber is distributed in a
very nearly homogeneous manner. For resonance absorption in heterogeneous
media see Art. 9.4.

3.62 The spatial distribution of slowing-down density from a localized source of
fast neutrons in an infinite medium will, of course, be modified from that discussed
in Arts. 3.3 and 3.4 if the medium absorbs neutrons. If the Fermi model is used,
and if the medium absorbs only weakly, it can be shown that the spatial distribution
of slowing-down density ¢’(r,E) from any source distribution in the absorbing medium
is related to the slowing-down distribution ¢(r,E), which would result from the same
source distribution if there were no absorption, by

¢'(nE) = p(E)q(r,E) ‘ (54)

where p(E) is the resonance escape probability discussed above. It is generally
assumed in reactor calculations that the same result applies regardless of the slowing-
down kernel used and, indeed, that the result applies not only for an infinite medium
.but for the finite reactor as well.

3.53 The Resonance Integral. If the microscopic absorption cross section of a
material, as a function of energy, is denoted by ¢.(E), then the resonance integral
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for the material between the energies E and E, is

Ep
Resonance integral = /E

[

va(E") % (55)
Note that since for typical moderators the flux is proportional to 1 /E in the resonance
region [cf. Eq. (41)], the resonance integral is just the integral of the absorption cross
section weighted by a factor which is proportional to the flux in such a moderator.

3.54 Use of Resonance Integral to Calculate Resonance Escape Probability. For
the case in which the macroscopic absorption cross section is very much smaller than
the macroscopic scattering cross section of the medium, the resonance escape prob-
ability becomes

~ Bo 3, dE’) ~ ( [Eo Nooo dE’
p®) =ow (- [ 2T e (- [N (56)

where N, is the number of absorber atoms per cubic centimeter. Again, if the scatter-
ing cross section is constant over the range of important absorption, the resonance
escape probability can be written

IE._,/EO dE_’)_ [_lN., . ]
i3 = exp 3, (resonance integral) (87)

e g
Note that the ratio Na/Z, is the reciprocal of the macroscopic scattering cross section
of the medium per atom of absorber in the medium.

Measured values of the resonance integral are usually quoted for the energy interval
from fission (E,) to the cadmium cutoff. The upper limit of the energy is usually
unimportant as long as it is high, since absorption cross sections are low in the million-
electron-volt range of energies.

3.66 The effective resonance integral is so defined that an equation similar to Eq.
(57) will apply even if the inequality Z. <« Z, does not hold:

p(E) = exp (—

p(E) = exp [ - % % (effective resonance integral)] (58)
and .
. . o3, dE’
Effective resonance integral = /E m e G
E, 1 dE’
= /E 1+ (Neoa/Z) ° B 59)

Note that for a given absorber the effective resonance integral will depend only on the
quantity Z./N,, the scattering cross section per absorber atom. Thus, a few measure-
ments of the effective integral as a function of this ratio will define its variation. The
curve of effective resonance integral vs. Z,/N. will, of course, extrapolate to the true
resonance integral for very large values of Z,/Na.

4 ENERGY DISTRIBUTION OF THERMAL NEUTRONS

Neutrons slowing down in a moderating medium, if they are not captured first, will
eventually reach such low energies that upon collision with nuclei of the medium they
may either lose energy or gain energy from the thermal motions of the nuclei. Ulti-
mately they come into equilibrium with the nuclei of the medium, gaining, on the
average, as much energy as they lose. The neutrons in such a case are referred to as
thermal neutrons.

4.1 The Maxwell-Boltzmann Distribution

If the absorption is quite low, the neutron energy distribution follows the Mazwell-
Boltzmann law, the same as that which describes the distribution of energy of thermal
agitation among the nuclei of the moderator. If n(E) is the number of neutrons per
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unit volume per unit energy interval at the energy E, if n is the total number of thermal
neutrons per unit volume, and if 7 is the absolute temperature of the moderator, the
Maxwell-Boltzmann distribution of neutron energies is

7_‘@ - _2__ B e—E/kT (60)

no o A/r R

where k is the Boltzmann conslant and is equal to 8.61 X 1075 ev/°K.
The velocity distribution of the neutrons is given, in terms of n(v), the number of
neutrons per unit volume per unit energy interval, by

n(v) 4 m \¥ , my?
LA/ i - 1
v =2 Gr) e (- ©D
where m is the mass of the neutron.

The most probable velocity « of the neutrons in a Maxwell-Boltzmann distribution
is .
_ [T

m

(62)

a

The energy corresponding to this most probable velocity is
E = Y4ma? = kT . (63)
but the most probable energy is 34kT.

4.2 Specification of Neutron Energy: kT Neutrons

The energy of a thermal-neutron distribution is ordinarily characterized by giving
the energy k7T corresponding to the most probable velocity in the distribution.
Neutrons in & thermal distribution of temperature T are sometimes referred to as kT
neutrons. “Thermal cross sections’ are usually quoted as the cross sections for
monoenergetic neutrons of velocity 2,200 m/sec. This velocity corresponds to the
kT value 0.0253 ev and is the most probable velocity for the temperature 20°C. For
computing the number of processes occurring in a medium containing a thermal dis-
tribution of neutrons, an average cross section is usually derived, as discussed in
Art. 4.3,

4.3 Averaging of Thermal Cross Sections

In a diffusion medium, if any process is characterized by an energy-dependent cross
section Z(E), then the number of such processes occurring per unit volume per second
per unit energy interval is ¢(E)Z(E), where ¢(E) is the neutron flux per unit energy
interval. In the thermal-energy region, the cross section may be averaged over the
Maxwell-Boltzmann distribution of fluz to obtain an average cross section which,
when multiplied by the total thermal fluz, gives the total number of processes occurring
per unit volume per second in the thermal-energy region:

L” 2E)o(B) dE ﬂ)” 2(E)n(B)v(E) dE

= fow #(E) dE fom n(EY(E) dE
[0‘” 2(E) [—\;—_UCET}:%e—E/”] (%)%dE
[ [ amae] (5) e

- Uc;_)2 /O,, 2(E) Ee" /T dE (64)

p>
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The averaging can be done numerically for any measured variation of the cross section.
Obviously, either the macroscopic cross section Z(E) or microscopic cross section
o(E) can be averaged. ) .

The use of such averaged cross sections makes it feasible to apply the laws of
diffusion of monoenergetic neutrons (Art. 2) to the thermal distribution of neutrons.
Usually it is necessary to average only absorption or fission cross sections. In media
which show strong variations of scattering cross section with energy in the thermal
range (e.g., H:0) the variations result from interactions between the neutron and the
molecular structure of the medium or from interactions between the neutron and the
crystal structure of the medium. In these cases the diffusion coefficient cannot be
derived from a simple average of the scattering cross section, and the only reliable
values are obtained experimentally.

If the cross section to be averaged is proportional to the reciprocal of the neutron
velocity in the thermal region (1/v variation), the relation between the average cross
section # and the kT cross scction axr is

T OkT
7= 5O T 1128

(65)

and the average cross section for the absolute temperature 7' is related to the average
cross section for the absolute temperature T’ by

a(1) _ [T
3(To) \/ T (66)

For certain important cross sections which do not follow the 1/v variation, the averag-
ing indicated by Eq. (64) has already been done over a range of values of kT and
factors have been tabulated which correct for the departure from 1/v dependence.
Thus, in the cross-sectional compilation of Hughes and Harvey® a correction factor f
is given as a function of energy for a number of nuclides. If the kT cross section of
any of these nuclides, at energy F, is multiplied by the value of f corresponding to the
same energy E, an effective kT cross section, a.;7(kT), is obtained. The use of this
effective kT cross section in Eq. (65) will yield the correct value of & averaged over
the Maxwellian distribution which has its most probable velocity at the energy E.

4.4 Deviations from the Maxwell-Boltzmann Distribution

If absorption in the thermal region is large, the energy distribution of neutrons is
modified by the resultant loss of neutrons. The effeet for practically occurring
absorbers is to shift the energy distribution toward higher energy values. The
energy distribution in a medium of atomic hydrogen (constant scattering cross section)
with 1/v absorption has been investigated by Wigner and Wilkins.*1® These studies
indicate that the absorption does not change the shape of the distribution drastically
but shifts it toward higher energies. Experiments on existing reactors indicate that
the effective neutron temperatures exceed.the moderator temperatures by the order
of 50°C. .

Even in the case of weak absorption the Maxwell-Boltzmann equation cannot give
the true energy distribution of neutrons in the energy range several times kT, for in
this region the thermal distribution must merge into the 1/E distribution which char-
acterizes the slowing-down process (Art. 3). These two regions may be joined
approximately by equating the slowing-down density just above thermal energy to
the total absorption of thermal neutrons

¢ (thermal) 2, = q(En) = ¢(E)EEZ(E)

where ¢(E) is the flux per unit encrgy interval in the energy range just above thermal

and is thus given in terms of the total thermal flux by
oE) %

¢ (thermal) EfZ,(E)

(87)
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On the other hand, ¢(E), the flux per unit energy interval, is given in the thermal
region in terms of ¢ (thermal) by the Maxwell-Boltzmann distribution

LB _ 2 uB) EB¥ .,
¢ (thermal) /x 7 (I)%
- E ~E/&T
Tk (68)

The boundary between the thermal and the slowing-down energy regions can
arhitrarily be defined for a given medium as the energy at which the two distributions
(67) and (68) give the same value for ¢(E). It is to be understood that this is a
purely formal joining of the two distributions and that neither describes the true
neutron energy distribution well in the transition region. In most practical problems
a precise knowledge of the energy distribution in this region is not required.

5 CRITICAL REACTOR EQUATIONS FOR THERMAL
AND NEAR-THERMAL REACTORS

The thermal-neutron diffusion equation expresses the balance between production
and loss of thermal neutrons in a diffusion medium. In a thermal or near-thermal
reactor the absorption of thermal neutrons by fissionable material leads to fissions
which provide further neutrons, which slow down and ultimately become thermal.
When the characteristics of the reactor materials and their geometry are so adjusted
that the production of thermal neutrons by fission followed by slowing down (during
which process some of the epithermal neutrons may leak from the reactor) is just
equal to the loss of thermal neutrons by absorption and leakage, the neutron popula-~
tion of the reactor will remain constant in time and the reactor is said to be eritical.
The equation which satisfies this condition of criticality can be derived from the
diffusion equation [Bq. (12)] by setting the rate of change of neutron density to zero
and relating the source strength S(r) of thermal neutrons to the fission process.
Fer the latter purpose the multiplication factor k will be defined. In defining %, the
medium (reactor) is imagined to be infinite in extent but to contain the same energy
distribution of neutrons as the finite medium under consideration. The quantity &k
is defined as the number of thermal neutrons which would be produced in such an
infinite medium, by fission followed by slowing down, per thermal neutron absorbed.

When the procedure described above is applied, a general reactor equation is
derived, the specific form of which depends upon the neutron slowing-down law
appropriate for the reactor composition. By the application of approximations
which are valid for most practical cases,.the formal solution of the general equation
can be written in terms of the wave equation, which specifies the spatial distribution
of neutrons, plus a characteristic equation, which specifies the conditions for criticality
in terms of the buckling of the wave equation and the constants of the reactor materials.

The remainder of this section will present the reactor equation in detail, its general
solution, and the form of the equdtion and its solutions for various common slowing-
down laws. Detailed solutions for various geometries will bg treated in Arts. 6, 7,
and 8.

6.1 -The Finite, Steady-state, Reactor Equation

If we apply the ‘“monoenecrgetic” diffusion equation [Eq. (12)] to the thermal
group of neutrons, using appropriately averaged values for the thermal diffusion
properties of the medium (Art. 4) and identifying the local source strength of thermal
neutrons S(r) with the local value of the thermal slowing-down density ¢(Esr) we
have

DV, (1) — Zatal®) + q(Eor) = "—"a—f‘? (69)

where the subscript s designates the thermal (.e., slow) group of neutrons.
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In a chain-reacting system, the slowing-down density is that resulting from the
slowing down of fission neutrons. . We now designate by P(E,1,1') the finite thermal
slowing-down kernel, i.e., the probability that a fission neutron created at r’, inside the
reactor, will become a thermal neutron in unit volume at r. The slowing-down
density then becomest

k r ' '
0Bt) = [ 5P @) ar (70)
volume

where the integral is taken over the entire reactor volume. The finite reactor equa-
tion then becomes

D V2%, (1) — Zags(r) + £ Zebi ()P (Byrr) dr’ = 220 gy
p Jreactor at
volume

or, substituting L? for D/Z, and applying the equation to a critical reactor (9n,/9t = 0),

L2 v2g, (r) — ¢.(r) + L reactor & (tYP(E, 1) dt’ =0 (72)
volume

This is the finite reactor equation. Evaluation of the final term is evidently quite
difficult, since P(E,,r,r') will depend upon the leakage probability of fission neutrons
formed at 1. In the following section approximations are made which simplify the
evaluation of P(%,r,1’).

5.2 The Asymptotic Reactor Equation

Far from reactor boundaries the finite slowing-down kernel can evidently be replaced
by the corresponding infinite kernel P.(E, |r — r'|), which has the characteristic
that its value is determined only by the absolute distance |r — r’| between the point
of measurement and the point at which the fission neutrons were born. Such a
kernel is called a displacement kernel. The reactor equation for this condition becomes

L2 vig, (1) — 6.(r) +§ S (EVPo(Bylt — Pl dr’ = 0 (73)

all space

. It can be shown that if the extrapolation distance can be considered independent of
neutron energy, and if the finite and infinite slowing-down kernels satisfy the same
linear equation (true for the Fermi, group, and transport kernels and convolutions
of them), then the asymptotic solution holds everywhere in a critical reactor, except
within a distance of the order of a mean free path from the boundary, and the slowing-
down density in the reactor is identical with the infinite slowing-down density except
within a distance of the order of a mean free path from the boundary. The asymptotic
equation can, therefore, be used for most practical reactor problems. It is this
equation for which solutions will be given in the following sections.

6.3 General Solution of the Asymptotic Equation
The solutions of Eq. (73) are also solutions of the wave equation:
Vz‘bl + Bzd’s =0 (74>

where B? is a constant, which is generally referred to as the buckling of the reactor.
Until further restrictions are put upon B2, the solutions of Eq. (74) specify only a
family of possible spatial distributions of neutron flux in the reactor. It is necessary
to consider further restrictions on the solution which take into account the neutron

t Historically, both k and P(E,,r,r') have been so defined as to take into account resonance absorption.
The same definitions have been followed here. Hence the appesrance of the resonance escape proba-
bility p in the denominator of Eq. (70).
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balance within the reactor. Evidently, once a formal specification of the flux dis-
tribution has been made, as by Eq. (74), a formal evaluation can be made of the space
integral of the slowing-down density [last term of Eq. (73)]. In practice this is done
by taking the three-dimensional Fourier transform P.(E,B? of the slowing-down
density with respect to B2:t

P.(B,BY = /w eBE—IP (B, lr — 'd(|r" — 1)) (75)

The characteristic equation of the transformed reactor equation is then
—LB — 1+ 5P m.By =0 (76)
P

and the complete statement of the general solution is as follows: The asymptotic
reactor equation [Eq. (73)] is satisfied by any solution of the wave equation [Eq. (74)]
provided B? is a root of the characteristic equation [Eq. (76)]. Furthermore, the
slowing-down density ¢.(E,r) at any energy E is given by

Go(By1) = % 2P0 (E,B% 6,(x) )

Equations (74) and (76) give two specifications for the buckling B? of the reactor.
Equation (76) specifies B? in terms of the properties of the reactor materials. The
buckling when so specified is sometimes referred to as the material buckling B2 On
the other hand Eq. (74), when solved with appropriate boundary conditions, specifies
B?in terms of the geometry of the reactor. When so specified, B? is often referred to
as the geometrical buckling B,®. Only if the reactor geometry and the characteristics
of the reactor materials are such that B,? = B, will there be a solution for the
steady-state reactor equation that satisfies the boundary conditions. This condition
(Bn? = B,?) is referred to as the critical condition.

The above treatment of the general reactor equation is obviously little more than a
conceptual one. More detailed treatments will be helpful in fundamental applications
of the theory. = However, for the practical purpose of calculating critical reactors

. for which the usual slowing-down distributions apply, values of P, (E, B?) have been
tabulated (see following sections). For these cases the appropriate value of P, (E,, B?)
can be substituted into Eq. (76), and solution of the reactor equation involves only
the finding of a consistent value of B2 which satisfies both the algebraic equation (76)
and the partial differential equation (74).

11f ¢(z,y,2) is a function (scalar or vector) in z, y, z space, its Fourier transform ¢{(£,0) in the new
¢, n, ¢ space is defined by the equation

dEnD = _[juo dxz /jw dy /jw dz e¥t=E+un+e0y (z,y,2)

A compressed notation is generally used, in which (z,,2) = r; (£,9,0) ~ w; dz dy dz = dr; dt dn df ~ dw.

In this notation the transform and its inverse are ,

V) = f V() AOT g

1

y(r) = B

/ Pw)e 10T gy
¢(r) and ¢(w) are either both scalars or both vectors.

If the function y(r) depends only on r = |r|, then its transform ¢(w) depends only on & = |w!, and
the transformations simplify to

4 «© .
Ylw) = - /0 ¥ (r) sin wr dr
¥(r) = ﬁ jow wl(w) sin wr dr

1 The treatment outlined here is that developed by Weinberg and described in Ref. 2, vol. 2, part 1,
chap. 5.
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5.4 Gaussian Slowing-down Distribution (Fermi Age Theory){

. The infinite slowing-down kernel and the resulting characteristic equations are

n _ pexp [=|r— r'*/4r(E))
K 1: Po(E,1,1) =
erne (E,,1,1r") [Anr (BT (78)
Fourier transform: P, (E, B2) = pe~B'rEs (79)
Characteristic equation: 1 + L2B? = ke=Br(Es) (80)

1n these equations, r(E,) is the Fermi age from some “effective’”” value of the fission
energy to thermal. Rigorously, this effective value depends upon B,?, but the value
for a medium of infinite extent can be used in most practical cases (see Art. 3.44).

It will be recalled that the Gaussian slowing-down distribution results from the
assumption of ‘“continuous’ slowing down (Art. 3). The corresponding character-
istic equation (80) therefore is used most successfully for moderators which approxi-
mate this condition, i.e., for relatively heavy atoms such as carbon.

5.5 Zero Slowing-down Length (One-group Theory)

Tn this representation it is assumed that the fission neutrons are born as thermal
neutrons. It is a poor approximation for most cases; the ““modified’”’ one-group
theory (see below) is a much better approximation of equal simplicity.

Kernel: Py (B, 1,r") = pé(r — 1)§ (81)
Fourier transform: P, (E, B?) = p (82)
Characteristic equation: 1 + L*B?* =k : (83)

6.6 Exponential Slowing-down Distribution (Two-group Theory)

Tt is assumed that a fission neutron diffuses without change of energy and with a
diffusion coefficient D; until a single (fictitious) slowing-down event occurs which
reduces its energy to thermal in one jump. A cross section 2., is assigned to specify
the probability of the fietitious event per centimeter of travel, and a characteristic
slowing-down length Ly is defined in analogy to the thermal diffusion length L:
D1 ‘ (84)

2

L
Zar ns

The diffusion kernels of Art. 2 apply to this picture (when multiplied by Z.; to give
slowing-down density): =

— —r'l
Kernel: Py (E,r,r’) = pexp (=1/Lyir — 1| (85)

4rL e — r'|
Fourier transform: P (E,B?) = 1'+_};3,TB_2 (86)
Characteristic equation: (1 + L2B)(1 + Ls2B?) =k (87)

For the most useful applications of the two-group model, it is convenient to write
the two coupled partial differential equations which, for this model, are equivalent
to the asymptotic reactor equation (73):

k
Df Vz‘i’f - Z¢/¢/ + ‘Z‘) Zashs = 0 ' (88)

D, V2¢, — Zastps + pZasdsr = 0 (89)

1 See Art. 3.
+ §is the Dirac delta function, defined as a function whose value is zero at all values of z except z = 0

and whose value at z = 0 is such that /i - dzydz = 1.
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In these equations the subscript s designates the thermal group of neutrons and the
subscript f designates the fast group.

These two equations are simply the diffusion equations for the thermal flux ¢,
and the fast flux ¢;. They are both satisfied by solutions of the wave equation

vi¢ + B?¢ =0

provided the solutions for ¢; and ¢, are so chosen as to preserve the relations between
the fast and thermal fluxes as specified by Eq. (83) or (89); e.g.,

b _ Zas + DiB? °0)

s PZas
{see Art. 7).

Computation of the mean square slowing-down distance from the kernel [Eq. (85)]
shows that it is just 6Ls;2. Hence L,* has the same significance in the two-group
representation as the age r has in the Fermi age representation. Obviously, the two
characteristic equations (80) and (81) will not predict the same criticality conditions
for a given reactor if identical values are used for r and L% Experience has shown
that the two-group picture is the better approximation for hydrogen-moderated
reactors and that reasonable agreement between experimental and calculated critical
sizes for such reactors results if the measured value of the “age” or slowing-down
area is used as the value for L;2.  For reactors moderated by relatively heavy materials
such as graphite, the Fermi age picture is much the better approximation, and good
results can be obtained in two-group calculations only if some adjustment is made
on the value of L%

Despite its limitations the two-group approximation is used extensively for multi-
region calculations (e.g., reflected reactors) on many types of reactors because it is
the simplest approximation which will give reasonably accurate results for such
problems. When moderators other than those rich in hydrogen are involved, L,? is
often considered as an adjustable quantity whose magnitude can be adjusted to
compensate for the relatively poor description which the diffusion kernel gives of the
slowing-down distribution. For example, if a reflected reactor is to be solved, a
guess may first be made of the equivalent bare dimensions of the reactor (Art. 7.6),
and the equivalent bare reactor may be solved by some approximation better than -
the two group. An adjustment may then be made in L,* to.force the two-group
calculation to give the same result for the equivalent bare reactor, and this adjusted
Ls2 may be used in the calculation of the reflected reactor.

5.7 Modified One-group Theory

1f the left-hand side of Eq. (87) is expanded and the term in B* is neglected, we
obtain the characteristic equation for the modified one-group approximation: :

14 (L2 4+ LB =1+ M2B? =k (91)

A similar result is obtained if the Fermi age equation (70) is expanded to terms of
first order in B2, The quantity M2 = L 4+ L;* (or L* 4 r) is called the migration
area.

5.8 The Multigroup Approximation

In the multigroup representation treated here, the epithermal energy range is
divided into a number of smaller energy intervals and all the epithermal neutrons are
sorted into the same number of “groups’ according to the energy interval into which
they fall at the instant considered. A neutron of a given group is considered to diffuse
at constant energy until a slowing-down event occurs which slows it into the next
lower group in one jump. Every neutron, during its lifetime, is considered to pass
through every energy interval (for a more general multigroup representation, see
Sec. 10). Evidently the two-group representation is the special case of the n-group
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representation in which n = 2. For the n-group case we define n — 1 fictitious
slowing-down cross sections Z,; which describe the probability of slowing from one
group to the next and (n — 1) L’s and x:’s which are related to the Z,; and the average
diffusion constant D; for each group:
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D;
Lz = = Zt 2
> (92)

1
it
If we let ¢ = 1 refer to the highest energy group, the slowing-down kernel into the
nth (thermal) group is

Po(But:) = /w dr[,, dr /,, dr, ., 2P_alte — 1)
( D) =P _e dt2 | _ OIs — ! 4rLy%ry — 1y

€xXp — xa|f; — I3 .

€XP — xn_1|fn — Tu_i|
. 93
4rLo?|ry — 14 ¥3)

47|'Ln—12|tn - rn—ll

X
where x; = 1/L..

The Fourier transform of the kernel is

Po(E.B?) = — P
( ) (1 + Li2B)(1 + Ls?B?) - - - (1 + L._,?B?)
and the characteristic equation is
n
[T @« +z2By =&
1=1

where, it will be remembered, L,? is just the thermal diffusion area L.

The characteristic equation is thus an algebraic equation of degree n. If k > 1,
there are always n — 1 complex or negative roots in addition to the one real, positive
value for B% In the case of a bare reactor, the complex and negative roots are
eliminated by the boundary conditions.

5.9 Convolution of Slowing-down Kernels; Synthetic Kernels

Equation (93) is an example of a convolution of slowing-down kernels. If a kernel
has the general form

P(lrn = n|) = fdrefdrs « - - fdtai[Pi(jrs — 1)[P2(jrs — 13))]

X [Ps(IrA - 1'3!)] e [Pn—l(lrn - rﬂ—ll)] (94)

it is said to be a convolution of the kernels Py, Py, . . ., Psi.  If the Fourier trans-
forms of these kernels are, respectively, P,(B?), Pa(B?), . . ., P,_1(B?), then the

Table 4. XKernels and Their Transforms
(L? and 7 have the same meaning as in the discussion above; A is the mean free path)

Type

Kernel Transform

Po(B1,1')

P« (E,BY)

,
e—-!r—r 747

Gaussian (Fermi) — = e_B b
(471)7
—|r=r'|/L
Diffusion e Tlr—rl !
4zL2fr — 1| 1 + L2B?
e"|r"‘fl|/7\ 1 :
Transport — tan—! (A\B)

4xAlr — r'|2

AB
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transform of the convolution kernel P is simply the product
B(B?) = [Py(B)][P2(BY)] - - - [Paia(BY)] (95)

Convolutions of kernels of the same or different types may be used to approximate
the slowing-down distributions in various moderators. The three types of kernels
which have been employed, with their transforms, are listed in Table 4.

If a convolution kernel is arbitrarily constructed to fit the measured slowing-down
distribution in a moderator without regard to the physical aspects of the slowing-down
process, the result is often called & synthetic kernel. For example, the slowing-down
distribution in H.OQ has been described by a convolution of four diffusion kernels
whose characteristic lengths [L;, Eq. (92)] were arbitrarily chosen to fit the experi-
mental measurements.

6 SOLUTIONS OF THE WAVE EQUATION FOR HOMOGENEOUS
BARE REACTORS

As pointed out in Art. 5, solution of the eritical reactor equation consists of finding
a value of B? which satisfies both the wave equation (74) and the characteristic
equation (76). We consider here the solutions of the wave equation for homogeneous
bare reactors. A one-dimensional (slab) and a three-dimensional (rectangular
parallelepiped) case will be treated as examples.
6.1 Infinite Slab

For a chain-reacting slab, infinite in the y and z directions, the wave equation
becomes

d%¢
CP 4 B2y =0
s + B%*¢
If we take the center plane of the slab as £ = 0, the solution is

¢ = A cos Bz + Csin Bz

where A and C are constants, to be chosen to fit the boundary conditions. Since ¢
must be symmetrical about z = 0, the constant C' must be zero, and the solution

a

f~— ACTUAL SLAB THICKNESS——*—

—EXTRAPOLATION LENGTH

—x=—0 —=+x ..

o
/
-
~
..
f

e

~
Fia. 4. Solution of the wave equation for infinite bare slab.

contains only the cosine term (Fig.‘ 4). The boundary condition is ¢ = 0 on the
extrapolated boundary of the slab. This condition is met if the half thickness of the
slab (a/2) is equal to »/2B or 3=/2B or 8z/2B . . . , ete.
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Table 8. Solutions of the Wave Equation for Homogeneous Bare Reactors

Extrapo-
Reactor shape bl:ﬁ?i- Form of V2 + Bip =0 Solution Critical dimensions
aries *
Slab; infinite in y | Planes d2¢ ¥z L
and z direction, .8 a +58=0 # =4 cos " ‘=3
thickness = g in] © = = 3 .
z direction; cen- Br="1
tral plane at at
z=0 .
Infinitely long r=R | 3% 134 2.405 5
cylinder of ) a2 Ti5 THe=0 ¢ =4AJo ( 7 r) R =245
radiug B (2.405) B
b=
‘Cylinder of radius | r=R |92 , 19¢ , 9% _ w2 2.405 . =1 (2405)2
B,length Hori- | Planes |52 V7 5 T 57 p=dewptol =g wt—m =&
g::eso:t :::{g,'- 2=+ Zﬁ + B9 =0 P + (2.405)2 (For minimum critical volume
£ 2945 5.441
R=""",H«|84IR="—,
B B
148
Vmin = —
B3
Rectangular paral- | Planes 9% | 9% , 82 _ Tz Ty Wz 2 2 2
lepiped of | a |5 T35 T3 # = 4 cos —~ cos -%con — Stpti=p
sides = a,d, =% =
and ¢; origin of 2 T8 =0 Bl= f +r + Ly (For minimum critical volume
coordinates at |, = + é, at b g2 .
center 2 a=b=c=\/_'=5'“‘,
B B
r=1 3 S
min = —/—
3
Sphere of radius R| r = R .z_ii?;+2d_¢b+32¢=0 A BT
drt rdr Ty =3
x2 474 130
Br=_ Vcr|t——1rR3=§E——B—3-

When the condition is added that the flux shall not be negative anywhere in the slab,
all conditions are satisfied only by a slab of extrapolated half thickness a /2 = =/2B.

Thus the multiplying slab is critical if its extrapolated thickness a is just equal to
~/B, where B is the solution of the characteristic equation (76).1 -The neutron flux
will be constant in time, and its spatial distribution will be given by

& = ¢ocos Bx = ¢ cos ~ z
a
where ¢ is the arbitrary value of the flux at z = 0, the center plane of the slab.

6.2 Rectangular Parallelepiped

The expanded form of the wave equation is

62¢ 32¢ 62¢

P TR T I 1 SR
ox? ay? + dz? + B¢

t The physically meaningful expressions for Pe (E,B2) have such form that the characteristic equation
has a single solution for B? which is real and positive. Negative roots may, however, be present. In
slab geometry they lead to solutions of the wave equation involving sinh and cosh (or exponential)
terms. In the case of the single-region reactor these solutions are eliminated by the boundary condi-
tions, either because they cannot be made to go to zero at the reactor boundary or because they give
discontinuities in neutron current at the center of the reactor. These arguments do not hold, however,
in the case of a multiregion reactor (see, for example, Art. 7).
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If the origin of coordinates is taken at the center of the parallelepiped, the sym-
metric solution is ‘
¢ = ¢y COS KgT COS Kyl COS Ki2
where (cf. Art. 2.26)
sz + Ku2 + Kzz = B2

Note that the solution is just a product of three slab solutions. This possibility of
separating the solution into independent geometrical components is characteristic of
bare reactors, .

If the extrapolated dimensions of the parallelepiped are a, b, ¢ in the z, y, and 2
directions, respectively,
2

2
T ™
2 =T K=

s TR &
and the reactor is critical if the dimensions arc such that
w2 x| w? .
pr + B + g B

Thus, the reactor can be made critical by proper adjustment of any one of the dimen-
sions, the other two being fixed arbitrarily provided they exceed a certain minimum
value (the value for which the third must become infinite).
6.3 Other Shapes
Table 5 gives the expanded form of the wave equation, its solution, and the critical
dimensions for bare homogeneous reactors of various shapes.

6.4 The Absolute Value of the Thermal-neutron Flux

This value in a thermal reactor is given by
A P

$ = 1.035 X 1018 —— — 96
é +E I, (96)
where = average thermal flux over the reactor core volume
A = atomic weight of fissionable material in reactor
7, = microseopic fission cross section of fissionable material, averaged over

thermal energy spectrum, barns
E = average energy liberation per fission, Mev
P/M, = ratio of operating power of reactor to fissionable material content of the
reactor, watts/g or kw/kg
If the fissionable isotope is U2, and if &, is taken, roughly, as 500 barns and £ as
200 Mev,t : :

é = 24X 1010—1‘% oD

For an effectively homogeneous reactor the above expressions give the average
flux over the core volume. For a lumped reactor they give the average thermal flux
in the fuel. :

6.6 The Absolute Value of the Fast—neutfon Flux

This value in a reactor is not often a very useful concept, since the total fast flux
includes neutrons of such widely varying energies. For rough estimates the value
of the two-group fast-neutron flux may be used. In a bare reactor (or far from the

t This value is only an approximate one. If an accurate value is required, it must be evaluated for
the specific reactor in question, taking into account the leakage of neutrinos and some v and neutron
energy from the reactor, as well as the production of extra energy by the nonfission absorption of
neutrons. Typieal values lie between 190 and 200 Mev.
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reflector in a large reflected reactor) the two-group fast flux is everywhere propor-
tional to the thermal flux in the ratio
¢f k Eas 1

¢ pZ,1+LAB (98)

where 2, is the macroscopic thermal absorption cross section, L,? is the slowing-down
area, B? is the geometric buckling, and Z,; is the fictitious slowing-down cross section
(=Dy/Ls?).

Although this equation is convenient to use, since the absolute value of ¢, is usually
known, a more straightforward expression for ¢, is

» X No. fissions/(cm3)(sec)
Zar(1 + Ls2BY)

b5 =

Thus, although the thermal flux depends on the specific power (power per unit mass
of fissionable isotope), the fast flux depends only upon the number of fission neutrons
produced per unit volume per second, the slowing-down cross section, and the fast
leakage 1/(1 + L,2B?).

6.6 The Fractional Leakage (£) of Neutrons

This value from a critical reactor is given by

0 = No. neutrons leaking/sec _k—-1 99)
No. fission neutrons born/sec k

For a bare thermal reactor, if it is assumed that the leakage of neutrons in the energy
interval between resonance absorption and thermal can be neglected, the leakage can
be divided into fast and thermal components (see Art. 5):

No. fast neutrons leaking/sec P,

: =1--—= (ElyB2)

No. fission neutrons born/sec )

1 —¢#" for Fermi slowing down
L;*B?

]

= m for “two-group’’ slowing down (100)
No. thermal neutrons leaking /sec L2B*
= P (E,B? 1
No. fission neutrons born/sec 1 + L2B? ( ) aon
A further useful leakage relation is
No. thermal neutrons leaking/sec - L2p2 (102)

No. thermal neutrons absorbed /sec

7 REFLECTED REACTORS

. A reflector is ordinarily a mass of material having £ <1, which is placed around
the outside of the multiplying core of the reactor to reduce the leakage of neutrons
out of the core. This reduction of leakage has the two advantageous effects of
reducing the quantity of fissionable material required for criticality and of causing
more nearly uniform flux and power distributions in the reactor core. The most
effective reflector material will be that which has the largest albedo for neutrons of the
energy-distribution characteristic of the reactor in question. The reflector is often
made of moderating material. In this case it returns neutrons to the reactor core at
considerably reduced energies and modifies the energy spectrum near the core-
reflector boundary.

Except in the special case for which the diffusion properties of the core and reflector
are identical for all epithermal energies, reflected reactors can be solved only by one
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Table 6. Definitions and Symbols Used in Arts. 7 and 8

Dimensions:
T, Ri, Rs, a, b = Dimensions of reactor regions. See Figs. 4 to 9.
Variables:
Dimensional variable of flux distributions; measured from inner dimension of each
region in a slab, measured from center of core for cylinder and sphere
¢ = Vector whose four components are, in order, fast flux, thermal flux, negative fast
current, and negative thermal current at an internal boundary
M, N, V, W, X = Functional values of flux distributions
A, B, C, E = Numerical coefficients
Characteristic constants of the reactor:
k = Multiplication constant in the core material
u? = Tor any region, the contribution of the leakage from unreflected boundaries of the
region to the total buckling
(x/a)? for an unreflected slab of thickness a
(2.405/R)? for an unreflected cylinder of radius &
Reciprocal of slowing-down area = |/Ls2?
Reciprocal of diffusion area = 1/L.?

pr = Vg + ut
Vit + u?

P

[

¥, = Macroscopic thermal absorption cross section
2, = Macroscopic slowing-down cross section = Dy/Ls?
D, = Diffusion coefficient for thermal neutrons
Ds = Diffusion coefficient for fast neutrons
B? = Material buckling of any region
B)? = “Fundamental’’ buckling in the core,
<360t + ) + 35 V0t + XD + Axgtaar(k — 1)
By'? = “Transient’ buckling in the core,
=380+ ) = 3 V0t F D+ bk~ 1)
I1=+vVEBzt~u
m =+ =Brt + ut
S = Coupling coefficient between fast and thermal fluxes = (Z: + D.B? /Z; in general
8 = (Zs + D«B1%) /2y } th .
§ = (=, + D.By3)/z, | in the core
S=10 .
8 = (Z. + D’x/z)/zl}m the reflector
Matrices:
. Q = 4 X 2 matrix constructed for the outer reflector
Ya = 4 X 4 matrix constructed for the nth intermediate region
Yeore = 2 X 4 matrix constructed for the core
Subscripts:

Denotes fast group of neutrons
Denotes thermal group of neutrons

©
[]

of the group methods. This is because other descriptions of the slowing-down dis-
tribution provide no means for matching the neutron fluxes and currents at the core-
reflector boundary over the epithermal energy distribution. In this and the following
sections the two-group formulation will be used. The treatment for larger numbers of
groups is similar but usually becomes t0oo cumbersome for hand computation.

The mathematical treatment is similar for the various geometrical cases of reactors
reflected in one dimension. One of these will be presented in some detail (Art. 7.1).
In the other cases only the final equations will be given (Arts. 7.2 through 7.4).

7.1 Cylinder of Finite Length with Radial Reflector (Fig. 5)

This case will be worked out in some detail to illustrate the method. The reflector
has k = 0.

The diffusion equations for the fast and thermal-neutron fluxes have been given
previously [Eqgs. (88) and 89)]. To minimize the complexity of the notation in the
following treatment, some of the subscripts will be omitted and Eqgs. (88) and (89)
will be written as

Df Vzd’f ~ Zs¢r + k2,0, = 0 (103)
D' V2¢s — Zeps — 2!4)/ =0 (104)
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It is to be understood that Z, in these equations designates the thermal absorption
cross section and 2, the fictitious fast absorption cross section (see Table 6 for a
complete list of the notation used in Secs. 7 and 8). It has been assumed in Eqs. (103)
and (104) that resonance absorption is negligible. If this is not the case p can be
included as indicated in Egs. (88) and (89).
In the core, k > 1 for a critical reactor; in the reflector, ¥ = 0.. In either case,
the solutions are the solutions of the wave
equations

- Vi¢s; + Bl¢; = 0 (105)
I Vip, + Blg, = 0 (106)

the solutions being coupled by the condi-
tion that the relation between fast and
thermal flux, as defined by Eq. (104)
{or, alternatively, by Eq. (103)], must be

o preserved:
z
2
G §=%_Zt+DB
& b, 3,
P and the solutions being further restricted

by the requirement that the characteristic
equation be satisfied:

B? B?
F1a. 5. (1 -!-u—,2 (1 +)¢_/;) —k =0 (108)

This characteristic equation is a quadratic in B2, which defines two values of B? (B%and
B’?) in each region. In the core, which will be characterized by the subsecript 1,

By = — (as? + ) + \/(uu’;- x152)? + basialk — 1) (109)
By = —balt +ud) — vV (mﬁ; ad)? + basbaltk — 1) (110)

In the reflector, which will be characterized by the subécript 2,

Ba? = —xa,? (11
By'2 = —ap? (112)

If it is assumed that the wave equation is separable in both core and reflector, so
that the solutions are the products of independent functions of z and r, then the
solution for each flux (fast and thermal) in each region (core and reflector) is of the
form

é = cos "fp'(r) ' (113)
where F(r) is the solution of the equation
ﬂ+l‘i§+[32_(f)z]p=o k (114)
dr? rdr E a

Since there are two values of B? in both core and reflector [Egs. (109) to (112)], a
total of four equations of this type must be satisfied to define each F completely in both
régions, thus:

2
Ty 18y = 0 (11)
core :
%+}§Eﬂ_mzpl/;0 (116)

dr? r dr
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dFay | 1dFy

2 - ustFay = 0 (117)
reflector

d®Fy; | 1dFyy =

o T dr wetlay =0 (118)

with identical equations for Fi, and Fs. In the above equations the signs of the
constants 2, m?, us? and pu,? are so chosen that the constants themselves are inherently

positive: ‘
B = Bp (1)2 (119)
H
2
m? = Byt — (‘5) (120)
2
ut = =~ (£) (21)
2
et = — et — ﬁ") (122)

In the core, the complete solutions for the fast and thermal fluxes are the sums of those
solutions of Eqs. (115) and (116) which are finite for r = 0:

Fi. = AJo(lr) 4+ Clo(mr) (123)
Flf = AS)Jo(lT) + CSx’Io(’I’ILT) (124)

In the reflector the solutions for fast and thermal fluxes are the sums of the solutions
of Eqgs. (117) and (118).

Fsy = Elo(uer) + GKo(ur) + HIo(usr) + M Kolusr) (125)
sz = S‘zEIO([JsT) + S2GKO([I.J) -+ Sz’HIo(}LjT) —+ Sz’MKo([J.ﬂ') = Sz’HIo(p./T)
: + So’'M Ko(usr) (126)

In these equations, 4, C, E, G, H, and M are constants to be determined by the
boundary conditions and Sy, Si’, Sz, and 8’ are the coupling coefficients [Eq. (107)]
appropriate to the region under consideration and the value of B%:

21 + DisBi?

8 = 127
1 T Q27
8 = 21, + Di,B:"? (128)
Zay
— Dot
8, = 2= Dawad _ (129)
Zaoy i
— 2
8y = Zu = Duwas (130)
P2y

Equations (123) to (126) contain six undetermined coefficients (4, C, E, G, H, and M).
Five of these, plus the criticality condition, are determined by the following six
boundary conditions: : .

FoR) =0 a3y
Fy(Ry) = 0 (132)
Fif(Ry) = Fyr(Ry1) (133)
FolRy) = Fau(Ry) (134)
D, B m) = Dy iFos (g, (135)
r dr
DT Ry = D I (R)) (136)

dr dr
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Applying conditions (131) and (132) to Eqs. (125) and (126) there result

Elo(usRe) + GKo(usRs) + HIo(usR2) + MKo(usRy) = 0
Sz’HIo(/JfRz) + S2IA[K0(;.L/R2) = 0

_ _ KO(#aRZ)
B = -G T (137)
Ko(usR-)
H = —p Bolwrks) 1
Tolus B (138)

Using these relations, and applying conditions (133) to (136) to Egs. (123) to (126),
the four simultaneous equations result:

AJo(Ry) + ClomRy) + G [%1%) Toul) = KoluR) |
KO(FJRZ) . =
o0 [ BB 1) — Katum | =0 (13)
ASWW(IRy) + C8y'To(mRy) + S'M [K"(—“’R-) Lo(usRy) — Ko(an] =0 (140)
To(usRs)

KO("SR2)
To(usRs)
Ko(llfR

2) : i
Totu s) Li(usRy) + Kl(u/Rl)] =0 (141)‘

Dl.Ale(lRl) - DquIl(WLRl) — DG [ Il(l-"aRl) + Kl(l‘slel)]

el DZxﬂ-fM [
Dy, A8\ (IRy) — Dy;CS/mIy(mR,y)
Ko(usR2)
— 8o'DorurM [_— I
el To(usRy) '

These four linear homogeneous equations, of the form

k1A + knC + kG + kM = 0
kzlA + kzzC + ]Csz + k24M = 0 (143)
ksiA + k32C + k3G + ks =0
kllA + k42c + IclﬁG + k‘lM = 0

Re) + KGR | =0 (142)

will have a nontrivial solution for 4, C, G, and M provided the determinant

kuikrokysky
D= kakoskoskay | _ 0 (144)

k3lk32k33k34
k41k42k43k44

Physically, this condition is the condition of criticality for the reactor. In general,
for an arbitrary choice of reactor characteristics, the determinant will have some
nonzero value. A practical method for finding a condition of criticality is to compute
the value of the determinant D for a number of different values of one of the reactor
.- characteristics (usually R,, H, k, or uranium density), to plot the value of D as a
function of the value of the variable characteristic, and thus graphically to determine
the value of the characteristic for which D = 0.

Once the condition of criticality has been established, the set of equations (143)
defines the relationships among the constants 4, C, G, and M. If one of the constants
(most conveniently, 4) is set arbitrarily, the remaining three may be determined in
terms of it by three of the equations (143), and the constants E and H can be specified
in the same terms by Eqs. (137) and (138). Substitution of these values into Egs.
(123) to (126) specifies the thermal and epithermal flux in the core and reflector,
except for an arbitrary multiplier. This multiplier, which specifies the absolute
level of the flux, can be determined if the power at which the reactor is operating is
known (see Art. 6.4).
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7.2 Finite Cylinder Reflected on the Ends (Fig. 6)

The fluxes are given by

b= T 2 (145)
or = 1 22 Fi@) (146)
where F, and F; are given by equations of the form
diF [ . (2.405)2] _
pE +|B 7 F=0 (147)

which have the solutions

F;, = A cos lz + C cosh mz

Fi; = 814 cos Iz + 8,/C cosh mz (148)
Fi, = E cosh p,¢ + G cosh pyf i
Fyp = S2'@ cosh prt

2 2
where i = B,* — (2i-RO5) —m? = B2 — (2—-——';05)
it = et = (B0 o e - (M0 o
urt = x2f R Hs (2 R
The coefficients 4, C, E, and G are related by the equations
Acos%l—+Ccosh%}£ — E cosh p,T — G cosh p;T =0
SiA cos " + 8,'C cosh mH _ 85'G cosh pT =0
2 2 (150)
—1D,,A sin 1_2;{ + mD1,C sinh ’-"—251 + Do sinh pT + puyDasG sinh w7 =0
—IDy;S:iA sin 1-2"1 ++ mDy;8,'C sinh m_2H & pyD2ySYG sinh 4T = 0

C e o
REGIONZ_ 1 _ T

- T l ¢ T
. el
// |
|
z " | z :'y H
7 l
o R— | X
REGION | [ REGION |
=T~ ) EE— Al
. J/ ! T
I~ REsONZ_ ] }
- - ~ /// b
——
Fia. 6. Fia. 7.

The methods used for Eqs. (139) through (142) can be applied to these equations to
find the condition of criticality and to determine three of the four coefficients 4,
C, E, and G.
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7.3 Rectangular Parallelepiped Reflected on Two Opposite Faces (Fig. 7)

The fluxes are given by

¢y = COS 1;5 cos %1/ Fi(2) (151)
b5 = COS ’% cos %y Fi(2) (152)

where F, and F; are given by equations of the form

w0 -G)r- s

The solutions for F are the same as those given in Egs. (148) above, and the equations
which determine the coefficients and the criticality condition are Egs. (150) above,
with the following changes in the definition of symbols: .

me- () -6 e -G)

]

12

e 2_(,:)2_(2)2 B 2=—u"—(’-’)2_(f)2 (154)
B a b e ™ ‘ a b
7.4 Reflected Sphere (Fig. 8)
The fluxes are given by

P15 = l (4 sin Byr 4+ C sinh By'r)
oy = 1 (SiA sin Byr + 8:C sinh Byr)

’

1 (155)
P25 = - [E(cosh xsr — coth x.[2s sinh x,r) + H(cosh xsr —-coth xs Ry sinh »x,r)]

P2y = 8 H (cosh sxyr — coth xsRs sinh xyr)
T

- 1

REGION 2 REGION !

3

|
|
|
z |
|
=R
LR, —

|
|
|
|
|
|
|
. | l
—— r——sl\\
P _ | ~—

Fig. 8. F1G. 9.
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and the coefficients A, C, E, H are related by the equations

A sin BiRy + C sinh By'Ry + E(coth x,Rs sinh xRy — cosh xRy
+ H{coth »;R, sinh »;R; — cosh s;R;) = 0
A8, sin BiR; -+ CSy' sinh B'R; + HS:'(coth xyRasinh ss By — cosh xsRy) = 0

ADy, (Bl cos BiR, — Ri sin BIRI) + CDj, (Bl/ cosh B,/R, — % sinh Bl’R‘)
1 1

I

+ EDs, (ns coth »s;Rs cosh xRy — x, sinh »,R,
— L toth xR sinh xRy + — cosh ,,R)
R1 3512 sl R1 sill

+ HD», (7(] coth xsRs cosh xyR1 — s sinh s Ry

1 1 (156)

— ——coth »sRssinh »;R; + — cosh chRl) =
R1 RI

ADy; (3131 cos BiR; — Ril 8, sin BlRl)
+ CDy; (SI’BI’ cosh By'Ry — n% S/’ sinh BI’RI)
+ HD»y (Sz’xf coth xsRs cosh »sRy — Se'ns sinh xsRy
— izi coth »sRy sinh » Ry + §—7l cosh szRl) =
R, R

and again, these equations may be used to determine the criticality condition and to
fix three of the coefficients, as in the case of Eqgs. (139) through (142).

7.5 Bare Cylindrical Reactor Containing Central “Reflector” or Absorber (Fig. 9)

This case occurs in computing the effects of centrally located control elements or
sometimes in computing the effects of experiments inserted in the reactor. The
quantity k. is assumed to be <1, but for the sake of generality is not taken to be
necessarily zero.

The fluxes are given by

$s = cOS gF,(r)
(157)
s = cos %z Fy(r)

where F, and F; are given by equations of the form

N N |
dr2+rdr+ B H (158)

and B? has two values for each geometrical region:

B = —Gas? + 02) + AV Gt o) + bt — 1)
2

B,/ = —(as® + ot — \/<7¢1/2 + 1152)?% 4 doersbey stk — 1)
2

(159)
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—Oe2s® + x2?) + V (eas® + x22)? + doos s (ke — 1)

Bgz =
2
(160)
8212 — —(7‘2/2 + 7(‘.'32) - ’\/(Jtz/z + 7(?;2)2 + 4)(2/2)(2,2(k2 —_ 1)
2
The quantitics 12, m?, us? and u,? are defined as
2 2
)
(161)

2 2
—_ut=R2 - (T —pu? = B2 — (I_)
wt =By (H) wt = By H

The solutions of the four equations of the form (158) are, then,

I = AJo(lr) + CYo(lry + Elo(mr) + GKo(mr)

Fip = SidAJdolr) + CYor)] + Sy [ETy(mr) + GKo(mr)] 162)
Fao = HIlo(us) + MIo(usr)

Fop = S:HIo(psr) + So’MIo(usr)

where
Sl _ 21: "'El)lsBl2 Sll — El: 'I'EI)UBII2
1f 1/
E?a - D2,Bz2 ' 22.7 et DZJBZI2 (163)
Sy = &/ 222 Sy =
Zof Zay
Applying the boundary conditions
Fiy(By) =0 Fiu(R) =0
Frp(Bs) = Fos(Ry) Fi(Rs) = Fu(Ry) (164)
dF dF dar,, dFs,
Dy =g (B) = Doy = (R Du (Ry) = D, 7 (Ba)
the constants 4 and E can be evaluated in terms of € and G, respectively:
Ya(lRl) Ko(le)
A=-C = @ ==L 165
Jo(lRl) Il)(le) ( )
and the remaining constants C, G, H, and M are related by the equations
Yo(IRy) ] [ Ko(mRy) ]
C [ - R R G| Ko(mRs) — =22 T .(mR
Tl JO(lr 2) + Yo(Ry) | + o{mRs) To(mEy) o(mRs)
~ HIo(usR2) — MIy(usRy) = 0
Yo(Ry) / Ko(mRy)
C [ — Y g R ] (e [ Ko(mRy) — =2V ]
Jo(ZRI) Jof Rz) + Yol 2) { + 81 o(m 2) Io(’MRl) O(MRe)
- SzHIo(#st) - Sz'MIO(#/T) =0
Yo(IRy)
D,C[l g IR,y — 1Y ZR]
1 TRy J1(IRy) 1(IRs)
+ D | ~mK(mR) —m KD 1) ] (166)

Io(le)
= DoHpd 1 (pRe) + Mul(usR2)] = 0

Yo(iR,)
SlDl_fC [l JO(ZRI) J)(ZR‘Z) - ZY),(ZRQ)]
+ 8/D\/G@ [ —mEi(mRs) — m %ﬂ’%‘)) 1,(mR,)]

— Dos[SeHp,Iy (ueRy) -+ Se’Mpsli(usR2)) = 0



Sec. 6-2] REACTOR CALCULATIONS 669

The criticality condition can be determined and three of the constants can be
evaluated from these four relations as explained in the case of Eqs. (139) through (142).

If the central region is a control rod, it is usually black to thermal neutrons, and
the boundary condition on the thermal flux in region 1 is

1 d¢al
$a1(Ra) dr

(R =1

where ¢ is the extrapolation distance for thermal neutrons (see Art. 2.7). Often the
rod material is a poor moderator, and a suitable boundary condition on the fast flux is

dén _
o (Ry) =0

When these conditions hold, the two constants C'and @, which must be evaluated to
describe the flux distribution in region 1, are determined by

Ky(mR,)
To(mEs) Ii(mRs) + Kl(mRz)]

Yo(IRy) 3 B
, o [JD(ZRO J1(Ry) Yl(le)] Gm[

e Yo(Ry) [ Ko(mR)) _
C [— To0Ry) Jo(IRs) + Yo(le)] e [——Io(le) Iy(mR,) Ko(mRz)] 67
and
Yo(IRY) _ ey Ko(mRy) =
8,01 [T.,(z_RT) TR — ¥,0Rs) | - svom [ K ) 1) + Ki(mRy) | = 0

7.6 The Reflector Saving

Given a reflected reactor known to be critical (either by calculation or experiment)
whose core has dimensions a, b, and ¢ in some coordinate system whose directions are
specified by «, B8, v, we remove the reflector which extends in, say, the « direction and
determine (by either calculation or experiment) how far the bare core would have to
be extended in the « direction to achieve criticality. If this critical dimension of the
bare core is a’, then we define the reflector saving in the « direction as a’ — a. The
dimension a’ is called the equivalent bare dimension of the reactor.

If the reflector saving for a given core-reflector combination is known, the criticality
calculations for the reactor can be made as though the reactor were bare, using the
reflector saving in place of the usual extrapolation distance.

The value of the reflector saving is often relatively insensitive to changes in some
of the important characteristics of the core. Furthermore, in many practical cases
the reflector saving is a relatively small fraction of the equivalent bare dimension.
These considerations make the reflector-saving concept a very useful one in practical
reactor calculations. For example, if calculations are to be made over a wide range
of reactor variables for design optimization, reflector savings can be calculated for
only a few conditions and values for the remainder can be interpolated.

7.7 Reactors Reflected in More than One Dimension

There is no analytical solution for the reactor reflected in more than one dimension,
although numerical methods (e.g., the relaxation methods) are possible. The usual
method for practical calculations is to assume that the reflector saving in any given
dimension is the same as that which would result if the reactor were bare and of the
equivalent bare size in the other dimensions. Thus, for a three-dimensional problem
one guesses first an equivalent bare value for each of two dimensions and solves the
actual reflected case in the third dimension, thus determining the equivalent bare
value for that dimension. The same process is applied in turn to each dimension,
using the ‘“correct” values for the equivalent bare dimensions as they are deter-



6-70 REACTOR PHYSICS [SEC. 6

mined and guessed values when necessary. After a calculated result has been obtained
for the equivalent bare value in each dimension, criticality can be determined by the
bare reactor solutions. If, as the calculation proceeds, it is evident that some of the
guesses made were very poor, it may be advisable to repeat the calculations using the
improved values for the equivalent bare dimensions. FExperience has shown that,
as would be expected, this method gives accurate results for reasonably large reactors
having reflector savings which are not large fractions of the equivalent bare dimensions.

An alternate method can be used if the core is of a compact shape and is identically
reflected on all sides. The core and reflector are replaced by spherical regions of
the same materials and of roughly the same geometrical buckling. The reflector
saving is computed for this spherical assembly, and it is then assumed that the same
reflector saving will apply to each dimension of the actual core-reflector assembly.
This method involves less computation than the preceding and may give more
accurate results if the reflector saving is a large fraction of the equivalent bare
dimension.

8 MATRIX SOLUTIONS FOR REFLECTED REACTORS

By Otto Schulze

The problem of the two-group reactor reflected in one dimension, which was treated
in Art. 7, can also be solved by the application of matrix algebra. Theresults obtained
can also be applied approximately to reactors reflected in more than one dimension
by the same schemes outlined in Art. 7.

N\M—\/\
w
l; [+ 14
w 5)9 c:tc-)-
g wo wo INTERMEDIATE R, FOR INTERMEDIATE
8 23 5y REFLECTOR REFLECTOR; R, FOR
E 5 ol OUTER REFLECTOR
x 4
. Z R, FOR OQUTER
I o 0 o, REFLECTOR
¢
]
—F T T
SLAB GEOMETRY CYLINDRICAL OR SPHERICAL GEOMETRY

Fia. 10. Notation for multiple-reflector problems.

The matrix solutions are particularly useful for reflectors which consist of more
than one region (Fig. 10), all of which are here assumed to be nonmultiplying. They
were originally described by Garabedian and Householder (MonP-246) and were
reduced to a straightforward computational procedure by Spinrad and Kurath.t
The symbols used here are the same as those of Art. 7 (see Table 6).

8.1 General Procedure for Calculating Criticality

For each region there is a matrix whose elements are determined by the two-group
constants and the dimensions of the region. For the outermost reflector the matrix
is called the @ matrix. It has a simple form because the fluxes vanish at the outer
(extrapolated) boundary. For each intermediate region n there is a matrix desig-
nated Y., while the matrix for the core region is symbolized by Ycore.

1 This section is a condensation of Ref. 11. The report contains form sheets which are very useful
if extensive computations are to be made.
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After all the elements of all the matrices have been determined, one proceeds from
the outer reflector through the intermediate regions in consecutive order to the core
region, forming the product first of the outer reflector @ matrix multiplied into the ¥,
matrix of the adjacent intermediate region. This product is then multiplied into
the Y, matrix of the next intermediate region, and so on, until finally a product is
formed with the Yeore matrix. This final product is a 2 X 2 matrix. The critical
condition is that the determinant of this final matrix be zero.

Criticality can be achieved either by varying a particular parameter (for instance,
the dimension of the core) until the value of the determinant is reduced to zero or
(as is more convenient if the nuclear constants, i.e., fuel loading, are to be varied)
by setting the determinant equal to zero and solving for one of the functions I tan (i),
UJo(lr)/J1(Ir)], or I cot (Ir) (depending upon whether the geometry is a slab, eylinder,
or sphere). In this notation [ is the square root of the partial buckling. Knowing
1, one can obtain the value of the total buckling B\2.. If B,? is not the same as the
test value, one iterates, using the new solution as a test value, repeating this process
until convergence is obtained. The procedure is demonstrated in Art. 11.7.

8.2 The  Matrix (Outer Reflector)

1
1 0 - 0
DfQ(#f)

Q= 1
01 Q(l-‘/yl‘s) Eq(ﬂa)
where
Slab Sphere Cylinder
‘ _ Ko(#Rz)Io(ﬂRl)
( ) _ tanh #T R1 } Ko(y.Rl) Ko(uRl)Io([le)
o u L+ uRycoth w(Bs — By) | wEGuly) | | KowRa)Li(uR)
K1(uR1)1o(uRs)
1
and qlusus) = 5D, lglus) — qlus)]
8.3 The Y, Matrix (for Any Intermediate Region n)
i
1
Xi(ps) 0 E Xz(#f) 0
1
Yo =]1X1(urme) Xilus) Xo(pr,us) D X2 ()
Dy Xa(us) 0O Xiw) 0
Xa(uspue) DeXalps) Xalwrnus)  Xa(ua)
where
Slab Sphere Cylinder
, 1 . pRA[To(uRo) K (uRy)
X (x) = cosh uT |cosh u(R: — R1) + R sinh (R — R)) + Ko(uRo) 1 (uB1)]
X _ sinh 7' |sinh u(R: — Ry) R\[Io(uR2)Ko(uRy)
2(#) = “ u et Ko(,uRz)Io(llRl)]
. . 1 WERNIL (uRy) K (uRy)
Xi(u) = usinh puT “RiF [u(B2 — Ry) cosh u(B: — Ry) — KR (uR))]
+ (u®RiB: — 1) sinh p(R, — Ry}
~ S o | eI (R Ko(uRy)
X4(u) = cosh uT  jcosh u(R: — Ry) ;1?2 sinh u(R: — Ry) + Ki(uRo)To(uR)]
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and
1
X1(urue) = 5 [X1(us) — X1(u)]
Xausyue) = ﬁ-f [Xa(us) — Xa(uo)]
D,
Xalpsype) = g [X3(us) — Xa(un)]
Xaurye) = <2 [Xalar) — X))
NET™ 5D, & By 4(is
8.4 The Ycore Matrix (for the Core Region)
1 1
1 1
Yo -1 8 5
—DiX.() D;X.(m)
-DX.(l) D,X.(m)
S S’
where
Slab Sphere Cylinder
¥4 1 Ji(IRy)
¢ 1 = leot IR, — — !
X tan ) co TR ToRy
mT 1 I (mR,)
. - th mRB, — -+
X.(m) tanh ) m coth mR, A TotmRy)

8.6 General Procedure for Determining Flux Distributions

After the critical condition has been achieved, the distribution of the fast and
thermal fluxes may be obtained. Starting with the core the constant A’ is calculated
from the ratio of the elements of the critical determinant; the other coefficients are
stated in terms of A’

A vector ¢ which represents, in order, the fast and thermal fluxes and the negative
currents at the boundary of the core is then obtained. These values of the fluxes
and currents are used in calculating the coefficients of the next region. The super-
script ¢ — 1 designates that the outer edge values from the previous region are to
be used.

One proceeds through the various intermediate regions in order and finally to the
outer reflector. Here the boundary values from the previous region form an over-
determined system for obtaining the fluxes and afford a check on the final result.

Distribution

¢7(p) = M(lp) + AN (mp)

Core:

M AN
@a(p) = s (Te) + 5 (mp)
Slab Sphere Cylinder
M@p) coslp gnjl_p . Jolp)
N(mp) cosh mp S—IE}% To(mp)

A’ cos (IT/2) A’ sin IR, A'Jo(IRy)

4 cosh (mT/2) sinh mR, Io(mRy)
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a b
QYcore = d
re 8
4 b
, c
A = — b (check)

The outer edge values of the fluxes and currents are obtained from the matrix product;

e.g.,

Intermediate Region:

M({R,))

| ¥eorsl ﬂ PR

= gl =

¢1(p) = AV(MP) + BW (usp)

@alp) = ¢/(p) + CV(pep) + EW (p0p)
Slab Sphere Cylinder
. p meas-
ured | cosh u(o — Ri)
V(up) |cosh up from | 7| ; measured To(up)
} inner | | 4 from center }p measured from axis of reactor
W (up) | sinh pp edge | 8inhulp — Ry) of reactor | Ko(up)
of re- P
gion
4 ¢rit Rigsit R [ann(nfRn)q‘:/' t + Ko(u/b’-n)]
Jpim RiJsi—t | gpim1 - [ . Jp ]
B — —_ sz R Ti(usRy)¢ri~t — To(usR
oD, D > 1| wrli(usRa) ¢r D, o(usRy)
i~ LI i ! - i 1 i
C patt — Ed’/ ' | Ry (du' 1 — I st ‘) Ry [#cKl(me) (da, 1 — 5 b ’)
+ (J.1 1D l) Ka(uan):l
: Jit Ji1 . 1 . [ ( . L )
- Tl — — it R o1 (usR Tl — it
E wD: @ I s U el 1 GusRe) { @, K &f

S'uDy

B (e

u.Da

)

— (‘1311_ D,

._1) To(psR1) jl

The outer values of fluxes and currents are obtained from the matrix product

7l sl (previous region) =

br

- ¢J
Ik = | %
Jl



Outer Reflector:
¢7(0) = AX(usp)

bu(0) = —Sl— 61(6) + BX (usp)

Slab . Sphere Cylinder
sinh u(T — p) p is measured from inner | sinh uw(Re — p) To(uR2)
X(Mp? edge of region — ) _ To(pe) — Koy Ko(up)
4 e | R 4t
sinh u,7T sinh ps(£e2 — Ry) ) To(usR1) — [To(usR2) JKo(urR2))Ko(usR1)
4 Ghooky | e By Y7 ¥ e S Jpo T
nrDys cosh usT (1/2) sinh py(Rs — Ri) + us cosh ur(Rs — Ry) D I(usRy) + [Lo(usR2) /Ko(usRa)) K1 (usRe)
B $ai7t — (1/8)s1 @it — (1/8)¢si1 $it — (1/8) ¢sit
sinh usT (1/Ry) sinh p.(R: — Ri) . To(usR1) — {To(usRs2) /Ko(psR2)1 Ko (usR1)
B(;heck) B A o Y Y 7 o ] (—BDITS + (RySDT T T I e p e T
neDs cosh uoT (1/Ry) sinh py(R2 — R1) + pa cosh (R — Ry) D I (paR) + [To(ueR2) /Ko(paR2)I K1 (usR1) }
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9 EVALUATION OF MATERIAL CONSTANTS OF THE REACTOR
By Otto Schulze and J. R. Dietrich

In order to set up the reactor equations for a given thermal reactor (cf. Arts. 5 and
10), it is necessary to evaluate a number of constants which are characteristic of the
materials of the reactor and their disposal in the reactor. In the reactor core, these
constants are L2 and D,, which apply to the diffusion of thermal neutrons; k, the
infinite multiplication constant, which is usually broken down as the product of four
other constants n, ¢, p, and f; and constants characterizing the behavior of fast neutrons
in the reactor. It will be assumed here that one of the simpler descriptions of the
slowing-down distribution will be employed and that the behavior of fast neutrons
can be characterized by two constants, a slowing-down area = (or L;2) and a diffusion
constant D;. If a reflector is provided on' the core, the same constants must be
evaluated in the reflector also. Usually, k is zero in the reflector.

- If the structure of the reactor is so fine-grained that none of its parts exceeds a
small fraction of a diffusion length in its smallest dimension, the reactor may be con-
sidered to be effectively homogeneous and computation of the material constants is
considerably simplified. If this condition is not met, the reactor is generally referred
to as a lumped reactor.t The particular type of lumping, in which the fissionable
material (fuel) is arranged in discrete lumps throughout the moderator—generally
in a regular lattice pattern—is of frequent occurrence in reactor design. - This type
of arrangement reduces the absorption of resonance neutrons by U2# and thereby
allows criticality to be attained with lower U235 /U238 ratios (lower enrlchment) than
would be possiblg with a homogeneous arrangement.

In the following articles, evaluation of the material constants will be" discussed
both for the effectively homogeneous case and for the lumped case described above.

9.1 The Infinite Multiplication Constant &

The infinite multiplication constant is arrived at in the following way: It is first
assumed that the region for which % is to be evaluated extends in all directions to
infinity. In this infinite medium, k is defined as the number of secondary neutrons
reaching thermal energy per primary thermal neutron absorbed in the medium and
can be broken down into the product of four terms:

= qepf (168)

where 7 is called the regeneration factor, e the fast-fission factor, p the resonance
escape probability, and f the thermal utilization. Equation (168) is often referred
to as the four-factor formula. - Evaluation of these factors is discussed in the four
immediately following articles.

9.2 The Regeneration Factor 5

The quantity » is defined as the number of fission neutrons produced per neutron
absorbed in the fuel. . The definition of fuel is to.some extent arbitrary. In a reactor
which is effectively homogeneous, the term fuel is usually applied to the fissionable
isotope. - In a lumped reactor the term usually refers to the fissionable isotope plus
any isotopes which are mixed with the fissionable isotope or are geometrically closely
agsociated with it. If the reactor is effectively homogeneous and the fuel is con-
sidered to consist of the fissionable isotope only, 7 is a constant characteristic of the
fissionable isotope. For thermal neutrons, 5 is given for a number of fissionable
isotopes in Table 7. If the fuel is lumped it may consist of a number of isotopes,
some of which are fissionable and some not. If the various isotopes are intimately

1 The reactor mxght also be referred to, in terms of its neutron properties, as a heterogeneous reactor.

This terminology leads to some confusion, however, as the terms homogeneous and heterogeneous have
becn used to characterize the state of actual physical homogeneity of the reactor.
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mixed, they are all exposed to the same average neutron flux and 5 is given by

7 = —E‘—N——— (169)
iOai

where N; is the number of atoms of the 7th isotope per unit volume, o; is the micro-
scopic fission cross section of the tth isotope, »; is the average number of neutrons
emitted per fission of the 7th isotope, and oq; is the microscopic absorption cross
section of the 7th isotope.

In some cases it may be convenient to consider as part of the fuel nonfissionable
isotopes which are closely associated with but not intimately mixed with the fissionable

Table 7. Number of Fission Neutrons Emitted per Thermal Neutron Absorbed (»)
. by Thermally Fissionable Isotopes*

Isotope n

Uzs 2.08+ 0.02
U2 2.31'+ 0.03
Pu2® 2.03+ 0.03

* From ‘‘Neutron Cross Sections,”” McGraw-Hill Book Company, Inc., 1955.

isotope. An example is the material used for the cladding of fuel elements. In such
a case the average flux may not be the same in all isotopes considered as part of the
fuel. 'The quantity 7 is then given by

E viNiosidi

4
T =
z Nivaids

h

where & is the average flux over the ith isotope. For symmetrical cases, ¢; may be
computed by methods similar to those discussed in Art. 9.3.

(170)

9.3 The Thermal Utilization f

The thermal utilization is defined as the ratio of the number of neutrons absorbed .
per unit time in fuel to the total number of neutrons absorbed per unit time in the
reactor. For an effectively homogeneous reactor it is given by

Za(fuel) ) 1

= 171
Za(fuel) + Z.(all other materials) 1 + [Z,(all othgr materials) /Z.(fuel)} (a7

f=

where Z, is the macroscopic absorption cross section.

In a lumped reactor the absorption cross sections of the various materials must be
weighted with the average thermal neutron flux over the materials. In computing f
for such a case the reactor core material is usually considered to be infinite in extent.
If the thermal neutron flux ¢ in such an infinite system is written as a function of some
space coordinate r, then f is given by

B e()aV :
= Baemav a7

where the integration is taken over a typical volume of reactor material. The
quantity Za is the macroscopic absorption cross section of the fuel material only,
and Z; is the total macroscopic cross section, mcludmg both fuel and any other
materials present.
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If the reactor core is made up of regularly spaced regions of fuel and moderator,
each of which can be considered individually as homogeneous, and if the macroscopic
absorption cross section is designated by Za: in the fuel and by Z,: in the moderator,
then f is given by

Za1 /fuel o(rydV ..
f= = (173)
2‘,“1[ ¢(r)dV 4+ Eag/ o(r)dV
fuel moderator

where the integrations are taken as indicated over a typical fuel region and a typical
moderator region. It is convenient to work with the average fluxes in the fuel and
moderator, ¢; and &, respectively:

1
b= Jo 608V (174)
1
and é2 = _V—2 /moderator $(r)dV (175)

where V, ‘a‘nd V. are the volumes of a typical fuel region and a typical moderator

region, respectively. Then

_ ViZauds = ) 1 )
ViZad: + VeZasde 1+ (Za2/Za1)(Va/V1)(d2/d1)

The ratio &:/$: is éalled the disadvantage factor. $2/¢: is given explicitly in terms
of f by

f (176)

Disadvantage factor = 5 = 3.7 7 1) Q7

For a fuel-moderator lattice of the type considered here, the first step in caleulating
f is the division of the lattice into a number of identical unit cells in such a way that
the unit cell possesses the maximum possible symmetry. Thus, if the fuel is dis-
posed in equally spaced slabs, the cell breakdown is usually made as in Fig. 11.

FUEL

R NN BN

B

FUEL—

MODERATOR

i

N

N

| I

| |

N |
/lf&,ifw_/\b
[TYPICAL CELL

Frc. 11. Section of reactor with fuel in  Fia. 12. Section of reactor with fuel in long
slabs. ) round rods.

i

Figure 12 is a typical breakdown for a reactor using fuel rods in the form of long
cylinders, disposed in a square array. - The next step is to approximate the true
shape of the cell by a shape which can be deseribed by a single dimension. This
must be done in such a way as to maintain the true volume of the cell: thus, the cell
having the shape of a long square prism with side length as in Fig. 12 is approximated
by a long circular cylinder of radius B2 = a/\'= (Fig. 13).

With the problems reduced to one in a single dimension by a suitable cell approxima-
tion, f may be computed by diffusion theory or by higher order approximations to
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transport theory. Only diffusion theory is treated here, although i

sidered a good approximation for the cases of small d;menjmm and st
which often occur in the cell treatment.

The case of the cylindrical cell will be treated as typlcal (Fig. 13), and solutions

will be given for other cases (Table 8).

The cell problem is treated as a problem in the diffusion of thermal neutrons: the

slowing-down density is assumed to be uniform over the region of the cell occupied

by moderator (region 2) and to be zero

TS _ in the fuel (region 1). There is thus a

TRUE CELL. BOUNDARY 1 source of ¢ neutrons/(cm3)(sec) uniformly

I througbout the moderator, and the diffu-

BOUNDARY OF ! sion equation is
EQUIVALENT CYLINDER &

1

D, V3¢ — Zargy =0
in the fuel (178)

Dy V2P, — Za2ge +q = 0
in the moderator (179)

/ where D is the diffusion constant and Z,
the macroscopic absorption cross section.
Writing » = Z./D, the solutions of Egs.
(177) and (178) are, respectively,

1 = AlGar) (180)

FUEL
(REGION 1)

MODERATOR
(REGION 2)

L
92 = BloGar) + CKiber) +L (81)
L a - . . . °
Fia. 13. Square cell of Fig. 12 cy lindri- where the K, solution in region 1 has been
cized. precluded by the requlrement that ¢ be

finite at r = 0.

Since all the cells are 1denuca1 and are assurzed to constitute an infinite array, there
must be no neutron current from cell to cell; hence d¢2(R.)/dr = 0. Application
of this boundary condition to Eq. (181) gwes the relation between the constants B
and C

1,2 Ry)
= IVETE 182
K, (2Ro) (182)
and Eq. (181) can be rewritten as
¢2 = GIK (x2R2)[o(3zr) + I1(5c2R2) Ko(rear)] + EJ(L (183)
a2
where G is a new constant
B
G = 184
K (e:Ry) (184)
Table 8. Values of E and F for Cylindrical, Slab, and Spherical Geometry*
Cell F E .
geometry
Cylinder x1R1 To(x1Ry) x2(R22 — R1¥) [ To(x2R1\)K1(x2R2) + Ko(xsR1)I1(x2R2)
2 Li(xRi) . 2R, I (x2R2) K1(x3R1) — Ki(x2R2)I1(x2R1)
Slab x1R1 coth x1 R sa2(R: — Ri1) coth »2(R: — R))
Sphere x12R, 2 tanh xRy x22(R23 = R)3) [ "1 —:x3R2 coth x3(R2 — R1) ]
P 3 xRy — tanh xR 3R, | — x2R2Ry — x2(R: — R1) coth x2(R: — Ri1)

For sphere and cylinder, R, is the radius of fuel, Rz the cell radius. For slal, R, is the half thickness
of fuel, R» the half thxcknﬁss of the cell. Subscripts | refer to fuel and 2 to moderator in all cases.

* A, M. Weinberg, *“Science and Engineering of Nuclear Power,” voL I1, chap. 6, Addison-Wesley
Publishing Company, Reading, Mass., 1949, - .
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Applying the conditions ¢:1(E:) = é2(Ry) and D1 (R1) = Dag¢s'(R1) at the interface
between regions 1 and 2 to Egs. (180) and (183) yields the values of the constants A
and G:

1 _ Za {I GaRy) — Diser 11 6 R)K 1 (s Ra) Lo (2 R1) + I\(Ksz)Ko(szl)]} (185)
A q o Do Ki1GeeR) I GeaRy) — (e Re) Ky (eaBn)
a.nd l — 1 D27(2 K]_(szz)I;(?QRl) - Il(7¢2R2)K1("2Rl) (186)

G Z D1}t1 Il(JflRl)

although, for the evaluation of f, the value of G is not required.
To evaluate f the basic definition of f is recalled:

f=

absorption rate in fuel
total absorption rate -

These equations will be evaluated for unit length -of cell; The absorption rate in
fuel per unit length is just the net neutron current into region 1 per unit length, or

Absorption by fuel per unit length = 2xR:J(I8)) = 27 R, [Dl % (Rl)]
= 2xRuA 22 1, GaRs)
x1

The total absorption per unit length of cell is just the total source strength per unit
length: . :
Total absorption per unit length = = (R,* — Ri*)g
whence

b aga(Re? — By 1 _ gu(Re? — Bi?) 1

f 2TR1241[1(X1R1) A 22¢1R1[1(7¢1R1) A

and, inserting the value for 1/4,

1 VaZa [’“Rl IO("IRI)] + %2 (B2 — Ry [Io(qul)Kl(quz) + KO()(?R[)Il(?(éRZ‘)]
f o o ViZalb 2 LGaR:) 2R, 1,G0oR2) Ki(ieaRy) — Ki(xaRo)1(52R1)
7 : ‘ (188)

Thus 1/f consists of two terms, one of which involves x of the fuel only and the other x
of the moderator only. This form of expression for 1/f can be derived for other one-
dimensional geometries, the customary form of the equation being

1 VZEQZ N

S =14 ety ~1 ~ 1
Here F, a function-of »; and R only, is actually the ratio of the flux density at the
fuel-moderator interface to the average flux density in the fuel. The quantity
(VaZa2/ViZa1) F is often called the relative absorption, The quantity E — 1 is
called the excess absorption. It accounts for the effect 'of ‘the higher average flux
density in the moderator relative to that at the interface.’ The values of F and E
for the case of cylindrical symmetry are obvious by comparison of Eqgs. (188) and
(189). They are repeated in Table 8, along with the values for the cases of spherical
geometry and slab geometry. i B )

If the fuel is surrounded by a thint layer of nonfissionable material of volume V,

per unit length of cell and macroscopic absorption eross section Zg, its effect can be
included by modifying the equation for 1/f to DR

} —1 4 (YERat V2N p g (p -y (190)

(187)

Vlzal

where the values of F and E remain unchanged.

+ “Thin” implying that the effect of the layer on the flux distribution—whether the effect be due to
absorption, diffusion constant, or slowing-down properties—is negligible.
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9.4 The Resonance Escape Probability pt

In the expression for k of a thermal reactor the resonance escape probability of
interest is that over the neutron energy range from the upper energy limit of important
resonance absorption to thermal energy. If the upper energy limit is designated E.,
then the resonance escape probability to thermal energy p(th) for an effectively
homogeneous reactor containing a resonance absorber is

o (m 2.(E') aE’
WM_“D{.A@MMLWO+LWNE} (1)

where Z,(E’) is the macroscopic absorption cross section, Z,(E’) the macroscopic
scattering cross section, and £(E’) the average logarithmic energy decrement per
collision (Art. 3.1) in the medium. These quantities are seldom known in sufficient

detail to permit evaluation of Eq. (191); an experimentally determined effective
’

d}f is usually used for evaluation of p. If £ and Z, can
be considered constant with energy (usually true in the resonance range), p(th) is given

by
1N, [Eo dE’
p(th) = exp (— ?E / Oaefy F) (192)

resonance integral / Casss

Eun

where N, is the number of absorber atoms per unit volume. Although the effective
resonance integral is an experimentally determined quantity, it is, in principle,

given by
Eo dE’ on 1 dE’
ae, —_— = T AT e~ o "o 1
/Eu. Tastt g Eo 1 4 (Neoa/Za) ° E (193)

and is a function only of the species of absorber and the ratio N,/2,. Figure 14 gives
experimentally determined curves of the effective resonance integrals as functions of
N,/Z, for uranium and thorium, the two most important resonance absorbers which
occur in reactor problems. The procedure for computing p(th) for these cases is as
follows: (1) Compute N./Z,, where Z, is the total macroscopic scattering cross section
in the medium,! including the contnbutlons of all scatterers present. (2) Find the

frorn the curve Fig. 14. (3) Use this value in

corresponding value of / Toers 7
Eq. (192) to compute p(th), employing a value of ¥ consistent with the scattering
cross sections previously used [{Eq. (37)). }

If lumped resonance absorbers are present, the resonance absorption density inside
a lump is much lower than that at the surface because of the very strong absorption
by the resonances. If the material of the lump has very low moderating power,
the energy regions depleted of flux by the strong resonance absorption near the surface
are not replenished by moderation, and this ‘“self-protection” of the absorber against
resonance neutron absorption is particularly great. It is this effect which makes
possible the construction of a eritical reactor from lumps of natural uranium in a
moderator, despite the high resonance cross sections of U2 which, in a uniform mix®
ture of uranium and moderator, would absorb too many neutrons to permit criticality.

Unless the lumped resonance absorber has a simple and well-known resonance
structure, its absorption must be determined by a semiempirical method. The case
of uranium is typical of the latter approach.

It is predicted theoretically and is found experimentally to be true that the rate of
resonance absorption by lumps of uranium of simple shape (no.reentrant surfaces)
can be represented by an expression of the form

um=&wwmmm+@wwmmm% (194)

tCt. Art. 3.5,
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where A(E) is the number of resonance absorptions per second per unit energy
interval, $;(E) is the average flux per unit energy interval in the interior of the
lump, &.(E) is the average flux per unit energy interval over the surface of the lump,
N, is the density of absorbing atoms in the lump, and V1, S, and M are the volume,
surface area, and mass of the lump, respectively; a(E) and b(E) are to be determined
experimentally.

If the lumped resonance absorbers are arranged in a regular lattice, some volume
of moderator Vs, will be associated with each fuel lump, the absorber plus moderator
making up a cell similar to those previously discussed (Iigs. 11 to 13). Itis assumed
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Fig. 14. Effective resonance-capture integrals of U2 and Th?3 diluted with neutron-
scattering materials. (Reproduced from R. L. Macklin and H. S. Pomerance, Resonance
Capture Integrals, Geneva Conf. Paper A/Conf.8/P.833/Rev.1.)

that there is no resonance absorption in the moderator. The decrease with decreasing
energy of the number of neutrons slowing down in the cell past any energy E is then
due to the absorption in the lump;i.e.,

(195)

and Q(E) is given, very nearly [Eq. (41)], by
Q(E) = Vids(E)EsZ0E (196)
whence, combining Eqs. (194), (195), and (196),

149 _ 1 [51(E)N1V1G(E) &s(E)N.V1b(E) S/M]
QdE EL V:$:(E)E:Zn V2@2(E)E2Za

and integrating between the limits Ew and Eo, p(th) is given as

(197)

QEm _ NV [ [ B $u(E) dE’
h) = = — = =
p(th) Qo ex { Vaia [ B 5B a(E") T |
S Ey ‘;;(El) , ‘Et
+ W e 33E b(E") i ]} (198)
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If it is assumed that &,(E)/@:(E) = &(E)/$:(E) and that the ratio $.(E)/$:(E) is
independent of energy in the energy range of important resonance absorption, then

_ NV é /E" ~AE S . o, QE]
exp [ VekrZes G2 J Bur o(E) E’ + M b(E") ¥

LNV E (R ]
exp [ V2E:Zse G J Bn Taus1(E) E (199)

i

p{th)

I

The above argument makes it appear reasonable that the effective resonance integral
for a lumped resonance absorber in a lattice arrangement can be represented, for
various geometries of absorber, by an expression of the form

N 8
f o/ (B') 57 = A Ty (200)

Where the subscript “resonance’” on the integral sign denotes that the integration is
taken over that energy range which includes all important resonances, from thermal

to fission energy.
- Values of A and p which have been used for natural uranium and natural uranium

compounds are given in Table 9.

Table 9. - Resonance Constants for Natural Uranium Metal and Some of Its
Compounds, for Use with Eq. (200)*

Material | A, barns | 4, barn g/em?

U 9.25 24.7
Ui0s 12 20

UO: 11.51 22.1
UFs 14.6 16.3

* From “The Reactor Handbook,” vol. 1, Table 1.5.26, AECD 3645, March, i955. See original
table for sources of information. .

In order to compute the resonance escape probability, it is necessary to evaluate
the ratio &,/&: [Eq. (199)]. The computation of this ratio is formally identical with
the computation of the disadvantage factor (Art. 9.3). If a resonance disadvantage
factor f, is defined in a manner completely analogous to the disadvantage factor of
Art. 9.3, then [cf. Eq. (177)]

51 1 E.;sz 1

$2 " resonance disadvantage factor T EaVilff -1

_ 1 (201)
F 4+ CaVi/ZaV)(E — 1)

[see Eq. (189)], and

p(th) = exp

1
- - = = 202
VeSzZmF + 251 EgZ.g(E -_ 1) . ( )

NV / 70, (B @E'/E)  ZaN: [ 0s,,(E") 4B /E)
resonance resonance

In this expression the symbol T, denotes a fictitious “absorption” cross section
(macroscopic) which is really a slowing-down cross section, characterizing the prob-
ability that a neutron will be slowed out of the energy range occupied by the reso-
nances. ' It is equal to 2, the number of scattering collisions per unit volume per
second per unit flux divided by 1/%In E./Es, the average number of collisions required
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to slow a neutron through the resonance region covering the energy range E: to Ea:

Esz

b oYl A—
* T (/B In (Bi/By) @02)
The average absorption cross section in the absorber 24, is, by definition,
N 70, (EVGE/E) Ny [ 0s,,,(E") AE'/E')
. resonance /7 _ resonance 7/
Za = = (204)
f dE//E/ In (El/Ez)
resonance
From Egs. (203) and (204),
Za _ N1 / iy G
},T:z - £Z,0 Jresonance da‘f’/(E) E (205)
and Eq. (202) becomes
1
th) = —_ =
p{th) = exp ViEEaF (206)

+(E-1)

M [ 0w, (E') (B’ /")
resonance

In order to apply Eq. (206), it is necessary to know the effective values of x for
the absorber and the moderator (for evaluation of E and F) and an effective value of
£2, for the moderator. Experimentally determined values of x, are given for uranium
and uranium oxide in Table 10, and values of x; and £2Z,; are given for various modera-
" tors in Table 11. .

The procedure for calculating the resonance escape probability is, then, the follow-
ing. (1) Set up a cell system appropriate to the lattice geometry (cf. Figs. 11 to 13).
Designate the fuel as region 1 and the moderator as region 2. (2) Take values of x;
and x. from Tables 10 and, 11 and use them with the cell dimensions to calculate F

Table 10. Values of x; at Resonance Energy in Natural Uranium Metal and UsOs

U x = 0.0222p em~!
Ui0s x1 = 0.025p cm™!
p» = density, g/cm3.

Table 11. Moderator Resonance Constants*

Material | Frs, barns per atom or per molecule | x2/p, cm?/g

H.0 38.5 0.583
D20 5.28 0.141
Be 1.26 0.128
BeO 1.76 0.06%90
Graphite 0.76 0.0672

* From “The Reactor Handbook,” vol. 1, Table 1.5.27. (See Ref. 17.) Original source CL-697,

IVE.
Values of x2/p are for use with U; if fuel is oxide, multiply by 0.88.
p = density, g/cm?.

and (E — 1) by the appropriate equations of Table 8. (3) Compute the surface /mass
ratio (S/M) of the fuel lump, and use it, with values of A and g from Table 9, to
computé the effective resonance integral f ga,, I(E’)(dE’ /E") by Eq. (200).

N resonance
(4) Take the effective value of £.2,s for the moderator from Table 11, and combine
with the other quantities determined above to find p(th) by Eq. (206). :
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9.6 The Fast Fission Effect ¢

The fast fission effect applies to the fission of U2 nuclei by fast neutrons in reactors
containing relatively large proportions of U238 to U2, It is usually a negligible
effect in effectively homogeneous thermal reactors because of the usually low ratio
of U238 to moderator in such reactors. Only neutrons having energies above about
1 Mev can ecause fission of U2, For this reason the following two assumptions can
often be made in calculating € for lumped reactors:

1. Any inelastic scattering collision within the fuel reduces the neutron energy
below the U2 fission threshold.

2. Any neutron which escapes the fuel lump is degraded to an energy below the
238 fission threshold by the moderator before it reaches a new fuel lump or is scattered
back into the original lump.

The quantity e is defined as the number of neutrons slowing down past the fission
threshold of U2 per neutron produced by thermal fission. With the above assump-
tions it is given by
b = 1 — C/ZNE, /2P

1 — (»Zy + Za)P'/%:
where 2., Z;, Za, and Z, are, respectively, appropriate average values of the capture,

fission, elastic scattering, and total cross sections in the fuel lump and » is the average
number of fast neutrons produced per fission of U2 by fast neutrons.

(207)
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Fia. 15. Probability of first-flight collision within a fuel lump. X is the macroscopic total «
cross section, x the reciprocal of thermal diffusion length. For spheres and cylinders R is
the radius; for slabs it is the half-thickness. P’ is given by the curves for»/2 = 0. (Repro-
duced from Fig. 15.14, The Reactor Handbook, vol. 1, AECD 3645, March, 1955; original from
CD-644.)

In Eq. (207) P is the probability that a neutron produced by thermal fission in the
fuel lump will make some kind of a collision within the lump before escaping. The
neutrons produced within the lump by fast fission may, in turn, produce further fast
fissions within the same lump, and on occasion a sequence of such fast fissions may
last through several fast-neutron generations. The denominator of Eq. (207) takes
account of these fission sequences. The factor P’ is the probability that a neutron
produced by fast fission in the fuel lump will make some kind of collision within the
lump before escaping. In computing P it is assumed that the sources of fission neu-
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trons under consideration are distributed in the fuel lump according to the thermal
flux distribution in the lump, whereas in computing P’ it is assumed that the sources
are distributed uniformly within the lump. Computed curves of values of P for
various lump sizes and geometries are given in Fig. 15. Note that P, since it involves
the distribution of thermal fissions, is a function of both x, the reciprocal of the thermal
diffusion length in the lump, and Z:R, the dimension of lump measured in total mean
free paths. The quantity P’ for a given geometry is a function of =R only; it is given
in Fig. 15 by the curves for which /2 = 0.

Values of the other constants needed for Eq. (207), for natural uranium metal,
are given in Table 12.

Table 12.  Fast Effect in Uranium

Constants for computation when there is no fast-neutron interaction between fuel lumps;*

Constant
as 0.29 barns
ool 1.5 “
2 <0.04 _“
o 4.3 “
v < 2.55 (dimensionless)

Experimental values of fast effect (¢) for 0.600-in.-diameter rods of slightly enriched uranium in light,
water. There is fast-neutron interaction between fuel lumps.}

Volume water % U2% in uranium

Volume uranium (by weight) ¢
0.1785 1.299 1,227+ 0.0
1 1.299 1.105+ 0.002
1.5 1.299 1.072 + 0.001
2 1.299 1.061 + 0.001
3 1.299 1.047 £ 0.001
4 1.299 1.043 + 0.001
1 1,143 1.109 + 0.002
1.5 1.143 1.074 + 0.001
4 ) 1.143 1.042 + 0.001

* From ‘* The Reactor Handbook,” vol. 1, Table 1.5.20, AECD-3645, March, 1955, Original source

CL-697.
+ H. Kouts, G. Price, K. Downes, R. Sher, and V. Walsh, Exponential Experiments with Slightly

Enriched Uranium Rods in Ordinary Water, Geneva Conf. Paper A /Conf. 8/P/600, June 30, 1955.

In close-packed lattices such as those which occur in some water-moderated reactors,
assumption 2 above does not hold, and there is a substantial increase of ¢ over that
caleulated by the foregoing method as a result of the mutual fast-neutron interactions
between separate fuel lumps. Measured values of e for some H:0-uranium lattices
of this type are given in Table 12.

9.6 The Thermal Diffusion Coefficient Dy

For an effectively homogeneous medium the thermal diffusion coefficient can be
computed from Eq. (10) or, if the medium absorbs strongly, by Eq. (9). Measured
values of A should be used if they are available. If they are not, the scattering cross
sections must be used in conjunction with a value of 4 computed from Eq. (11).
Table 13 gives transport mean free paths for some materials of importance. If the
medium is a mixture of materials, a macroscopic transport eross section (Ze¢ = 1/Awr)
can be obtained for each component and the total macroscopic transport cross section
of the medium can be taken as their sum.

In the case of lumped reactors, the ratio of moderator volume to fuel volume is
often sufficiently large that the moderator diffusion coefficient can be used as the
diffusion coefficient of the medium. If this condition does not hold, an approximate:
value for an effective transport cross section can be computed by taking a flux-
weighted average of the transport cross section over a lattice cell, exactly as is done for
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the absorption cross section in Eq. (209). The quantity D, can then be computed
as for the homogeneous case above. The resulting expression for the effective diffusion
coeflicient is

REACTOR PHYSICS

D = A} - % 1+ (Vx/V-z>(i4_>1/§5z)
7 - 32 3 Zera + (V,I/YV,Z)(¢1/¢2)2H1
where
‘ Vb S 3a
Vega 1 =fZa

The approximation is a poor one for use in matching neutron currents at a reactor
boundary, since the cell approximation does not hold at the boundaries. Such defects
are inherent in the cell method and are the price paid for the simplicity of the method.

Table 13. Thermal Diffusion Length and Transport Mean Free Path of
Various Materials*

b Thermal diffusion Transport mean free
Substance length L, em path (thermal), em
H:0 2.85+ 0.03 0.48 + 0.01
D10 (0.16 % H:0) 116 + 4 2,65+ 0.15
Be (p = 1.85) 20.8 + 0.5 1.43 + 0.05 (using oa:» = 9 millibarns)
BeO (p = 2.69) 29 + 2 0.90 (calculated from original
reference—CP-3647, 1946)
Graphite (corrected to p = 1.60):
GBF 54.4 + 0.5
(sabs = 4. 4 millibarns)¥
AGOT 52 + 1
(eabs = 4.8 millibarns)t
Th (p = 11.2) 2.7 +0.3
ThOz2 (p = 6) 4.1 + 0.4
U (p = 18.9) 1.55+ 0.05
Ui0s (p = 6.0) 3.7 + 0.4

* From '“The Reactor Handbook,” Table 1.5.4, AECD-3645, March, 1955. See original table for

sources of information. :
+ 2,200-m /sec values; obtained by using a caleulated value of 4,70 barns for the Maxwellian average

of the total cross section.

9.7 The Thermal Diffusion Area L2(= 1/x?)
The thermal diffusion area is given, in all cases, by the equation

12 = Do

2jath .
where T.s is the total thermal macroscopic cross section of the medium. In the
case of a lumped reactor an effective absorption cross section £, must be used in the
reactor core. 'The effective value is taken as the volume average of the true absorption
cross section, weighted by the thermal flux density; i.e., for.a cell (see Figs. 11 to 13)
where the fuel is designated by the subscript 1 and the moderator by the subscript 2

(208)

s - ViZaa + Vlzal((l_’![@ ’ -
¢ Vo + Vi(é1/$2) v
24:2 V2 (209)

REAEROS
where &,/3: is the reciprocal of the disadvantage factor [Eq. (177)] and f is the thermal

utilization [Eq. (189)]. Usually the term Vi($:/é2) in Eq. (209) can be neglected in
comparison with V.. For this case .

20 [ Zaz

e (210)
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and if the diffusion coefficient of the medium is taken to be that of the moderator,
the diffusion area becomes, approximately,

L* = L(1 — §) (211)

where L,? is the diffusion area of the moderator.
Experimental values of thermal diffusion length for a number of materials are given
in Table 13.

9.8 The Fast-diffusion Coefficient D,

An effective fast-diffusion coeflicient covering a range of energies can be defined only
within the formalism of the group treatment of slowing down.

Most reactors can be considered effectively homogeneous with respect to fast
neutrons, for even in lumped reactors the slowing-down lengths and absorption mean
free paths are sufficiently long that large variations in fast flux do not occur over a
typical lattice cell. Hence, at a given energy, a total transport cross section 2, (F)
can be evaluated which is just the sum of the macroscopic transport cross sections of
all the reactor core materials, considered to be uniformly mixed together. Thus a
diffusion coefficient D(E) = 1/3Z,(E) can be evaluated as a function of energy over
the energy range E; to E; covered by the fast-neutron group in question. Usually
D(E) will not vary rapidly with neutron energy, and it is therefore permissible to
make the assumption that the variation in energy spectrum from point to point in
the medium can be neglected. An effective diffusion coefficient D, can then be
evaluated for the group simply by averaging D;(E) over the energy distribution of
flux ¢(E):

[z, D(E)$(E) dE

D‘, = E:
E

(212)

If the energy distribution of flux can be represented by the 1/E distribution (Art.
3.2) the expression becomes

Es
/E, D(E)(dE/E)

D/ = ln Ez/El

(213)

9.9 The Slowing-down Area (r or L;?)

The computation of slowing-down area is quite difficult except in those cases for
which the Fermi age approximation applies (the approximation applies fairly well for
beryllium and moderators of higher mass number provided inelastic scattering is not
important). When the approximation does apply, = can be calculated by the equa-
tions of Art. 3.4. For other cases, see Ref. 5.

In all cases a measured value of r should be used if one is available. Measured
values are given for a number of moderators in Table 14, The table contains measured
values for fission neutrons slowed down to. the indium resonance energy and cal-
culated values from the indium resonance energy to thermal. The total + from fission
to thermal energy is the sum of the two.

As pointed out above (Art. 9.8), even lumped reactors can usually be considered
effectively homogeneous in computing fast neutron constants. In many lumped
reactors the slowing-down area for the uranium-moderator lattice is very nearly theé
same as that for the moderator alone; the high inelastic scattering cross section of the
uranium compensates for its low elastlc slowing-down power.

In two-group calculations the slowing-down area is designated by L;? instead of »
and is treated as a constant which may be adjusted to compensate for the deficiencies
of the exponential description of slowing down distribution. These adjustments are
discussed in Art. 5.6.
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Table 14. Age of Fission Neutrons in Various Moderators*
(Room temperature)

i g Calculated age Age to
Moderator Age to mdlum’ indium resonance thermal,
resonance, CIM® | 4, thermal, cm? cm?
H:0 30.4+ 0.4 1 31.4
D20 (0.16 % H.0) 100 +5 125
Be (p = 1.85) 80 + 2 17.2 97.2
BeO (p = 3.0) 105+ 10
C (p = 1.60) 31 3 53 364
66.7 % H20, 33.3% Al 49.6 2 51.6
509 H:0, 50% Al by vol 76.8 3 79.8
80 % H.0, 209 Zr 4 35.7
50% H»0, 50% Zr 61
(from reactor analysis)
D10 (p = 1.1 g/cm?) ) 127
D20 + 1.4 g ThOz/g D20 : l32}calc 1
D20 + 2.8 g ThO:z/g D20 140
(ThO: density = 9.69 g/em3)

96.7 % D:20, 3.3% U, by vol : 107 + 5%

Values of r for H:0-U mixtures can be inferred from M? measurements in the following reports:
S. Krasik and A. Radkowski, Pressurized Water Reactor (PWR) Critical Experiments, Geneva Confer-
ence Paper A /Conf. 8/P/60|. June 30, 1955; H. Kouts et al., Exponential Experiments with Slightly
Enriched Uranium Rods in Ordinary Water, Geneva Con/f. Paper A /Conf. 8/P /600, June 30, 1955.

* The first eight values are from ‘“The Reactor Handbook,” Ta.bles 1.5.1 and 1.5.2, AECD-3645,
March, 1955, See original table for sources of information.

1 J. Ernest Wilkins, Jr., Robert L. Hellens, and Paul F. Zweifel, Status of Experimental and Theoreti-
cal Information on Neutron Slowing Down Distributions in Hydrogenous Media, Geneva Conf. Paper
A /Conf. 8/P /597, June, 1955.

1 M. Tobias, Certain Nuclear Data and Physical Properties to Be Used in the Study of Thorium
Breeders, CF-54-8-179, Aug. 26, 1954,

§ E. Richard Cohen, Exponential Experiments on D:0—Uranium Lattices, Geneva Conf. Paper
A /Conf. 8/P /605, June 30, 1955.

10 MULTIGROUP CALCULATIONS
By David Okrent

In Art. 5.8 the multigroup formulation was given for the case in which fission occurs
only in the thermal group and all fission neutrons pass through all the epithermal
energy groups before becoming thermalized. A more general formulation is neces-
sary for the treatment of fast reactors or reactors in which an important fraction of
the fissions occur at epithermal energies. Applications and methods of solution of
multigroup calculations are varied and are often too complicated to be handled by
manual computation. In the following article the method is applied to the case of a
bare reactor, which requires only a modest amount of computation but suffices to
illustrate the application of the method.

10.1 The Multigroup Equations

If those neutrons whose energy lies between two arbitrary limits E; and E;_ (E;_, >
E;) are considered to make up the flux in group j, the time-independent diffusion
equation for this group can be written in the form

D; v2i(r) — (Zoi + 25 + Zinii + Zetmod,i) i (r) + 8;(r) =0 (214)

where D; V2¢;(r) = usual leakage term
Z..; = macroscopic capture cross section for group j
Z7.; = macroscopic fission cross section for group j
Tin; = macroscopic cross section for scattering inelastically out of group j
Tet mod,j = Macroscopic cross section for elastic moderation out of group j
Zremovesi = Zeij + Z45 F Zini + Zamod.; = the total macroscopic cross sec-
tion for processes removing neutrons from group j
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and where §;(r) includes all neutrons born into group j at position r. These neutrons
could be the result of fission by neutrons of any and all energies or the result of an
energy-degradation process from some higher energy into the band between E; and
E;_i. (Herein the possibility of an external source will be omitted.)

The entire energy range of interest will be divided into N groups or energy bands.
Furthermore, v; will be defined as the fraction of all fission neutrons born into group j,
and »; as the total number of fission neutrons born per fission in any group k. Then
Eq. (214) may be rewritten in the form

N

D; V2;(r) — Zremove i®i(r) + vi E veZ sk dr(r)
k=1
j—1 i—1
+ z Zil= Dorlr) + z Tt mos(m = bm(r) =0 (215)
=1 m=1

Of course, Z;.(I — j) is the macroscopic eross section for scattering from group [
into group j. Thus
I+1 .
z Tl = §) = Zins (216)
j=1

and a similar expression holds for the elastic moderation cross sections. The elastic
moderation source, in principle, could have contributions from all higher energy
groups; hence it has been summed from the highest energy group 1 to that just above
groupj. However, for materials other than hydrogen; such contributions are possible
only from relatively nearby energy bands and frequently only from the next higher
(in energy) group.

Equation (215) then describes the diffusion of neutrons in group j within a particular
homogeneous region. A set of cross sections for all N groups is required for this
region. The result is N simultaneous equations which describe the problem over the
entire range. Of course, if more than one region needs to be considered, a cross-
sectional set is required for each region. The usual boundary conditions of con-
tinuity of flux and current are applied to each group, and the multiple sets of simul-
taneous equations solved.

This latter problem of multigroup theory in more than one region cannot generally
be solved analytically. A numerical solution of an iterative type is required. This
solution is of sueh magnitude and needs such great accuracy that only modern high-
speed computing machinery is really practical for its achievement.

10.2 Sixﬁpliﬁcations for Single-region Computation

If multigroup diffusion theory is being applied to a single region (specifically, a
bare reactor core) a simplifying assumption can be made which makes possible a semi-
analytic solution with only a few hours work at a desk computer.

The basic hypothesis is that the flux has the same shape in every group. Within
the framework of diffusion theory, this would be rigorously true, independent of
geometry, if and only if the extrapolation distance were the same for all groups. This
is not usually the case. Furthermore, there is direct experimental evidence that the
neutron energy spectrum is not space independent in a bare core. Nevertheless, the
assumption of a space-independent neutron energy spectrum in a bare core is not a
very bad one and gives results which are rather good away from the boundaries.

Thus, it is assumed that

@ilr) = $;F(r)
i(r) = ¢F (1)
ai(r) = ¢’ (r)

In other words, F(r) is a spatial shape factor independent of energy. It is further
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assumed that .
VF(r) = —B*F(r) ’ (217)

where B? is the so-called material buckling. If a bare core of this material were built
in any shape, its extrapolated dimensions would have to be such that the geometric
buckling equaled this material buckling at criticality.

With these assumptions Eq. (215) becomes

N
—~D;iB%*p; — Zremove.ibi + vi z viZ s kPr
k=1
=1 i—1
+ Z = Der + Z Tt moa(m— ) = 0 (218)
1=1 m=]

The spatial dependence has been completely removed, since it is now common to
every term. It is convenient to rewrite Eq. (218) in another form, namely,

N i—1 j—1
Yi z viZsxde + Z Zinl— o + Z Za moa(m = j)bm
$ = k=1 =1 i=1 (219)

DjB’2 + Eremove.i

10.3 Procedure for Solution

" Equation (219) really comprises a set of N simultaneous equations, one for each
group. In practice, this is usually solved by an iterative procedure. For the highest
energy group {7 = 1) the numerator consists only of the fission source, no contribu-
tions being possible from inelastic or elastic moderatvlivf)n processes. If it is now

assumed that the total fission source for all groups z wZridr 18 some arbitrary
k=1
number, say unity, ¢, is given by

— Y1
¢1 - D132 + Enmovc.l (220)

The quantity ¢; still remains a funetion of B2. The procedure for solution is to
guess some reasonable value for B? keeping in mind that it is this quantity which will
be iterated on. When the solution converges, the critical value of the material
buckling will have been determined. The quantity ¢ is computed from Eq. (220)
with the trial value of B?; it is then possible to evaluate ¢.:

_ 72 T8, + Ta w1 D¢
D2B2 + zremove.z

o2 (221)

Since this group gets source neutrons other than fission only from group 1, it is com-
pletely specified and ¢, can be calculated. The process is continued through all the
groups in numerical order in this fashion.

At this point a set of ¢,’s has been obtained, and the convergencg test is to be applied.

This is done by calculating a value for the total fission source Z wZsedr and com-
k=1

paring it with the original assignment of unity. If the two agree within the desired

accuracy, the equations have been solved. Otherwise, 2 new guess on B?is made and a

second iteration performed. The fission source is again computed, using the new set
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of ¢;'s, and compared with unity. This process is repeated until convergence, which
comes quickly with some practice, .

When the solution is complete, not only the material buckling B? but also the
neutron energy spectrum have been determined. The spectrum is, of course, given
by the relative values of the total flux ¢; in each energy band.

10.4 Applications

The single-region calculation has a variety of applications, particularly for inter-
mediate and fast reactors.. It can be used in parameter studies to give the neutron
energy spectra and critical -masses for cores of varying composition (assuming a
previous knowledge of reflector savings). In connection with the latter, some caution
must be exercised in applying the results to reflected assemblies, since the reflec-
tor savings may differ sufficiently to alter the apparent trends of the one-region
calculations.

The neutron energy spectrum can be used in predicting various performance criteria,
also in establishing a set of one or two group cross sections for performing multiregion
calculations. Caution must again be exercised in that this spectrum is quite accurate
in performing energy averages for the core but will probably not be representative
of the reflector spectrum. This latter will probably change quite rapidly with dis-
tance from the core.

©10.6 Example

Suppose it is desired to determine the critical mass and various other performance
data of a certain fast power reactor. It is sodium-cooled, uses a plate-type fuel ele-
ment having a partly enriched uranium meat and a stainless-steel jacket. It is
assumed that previous experience indicates a reasonable reflector saving for this core
and the type of blanket contemplated. Then the material buckling is required for
the assignment of critical mass.

First, a group energy structure must be chosen so that cross sections can be assigned.
The choice is arbitrary, and the structure is a function of personal taste and previous
experience. However, the technical facts do suggest that certain boundaries are
reasonable. For example, the fission of U238 will be an important contributor to
reactivity; also, it is an important performance criterion. Furthermore, U has a
fission threshold in the neighborhood of 1 Mev; that is, it does not fission below this
energy. Above, it rises rapidly to a rough plateau. Hence, a logical place for a group
boundary is this threshold.

Again, suppose the fission or capture cross section of the fuel U2% exhibited a
marked change below some energy. It might be quite flat above 100 kev but rise -
sharply below this energy. This, too, would then be a logical place for a group
boundary. Indeed, if it was expected that a significant amount of the total flux
present was to be found below 100 kev, several groups might be used below 100 kev
in order to describe these events accurately. Thus, some idea of the neutron energy
spectrum to be expected is helpful in assigning group structure.

Again, if one of the materials had a large resonance in a region of considerable flux,
a group might be assigned to bracket it.

Finally, the manner in which certain important cross-sectional measurements were
made might be suggestive of group structure. For example, to find where in the
energy scale inelastically scattered neutrons go, threshold detectors like U?% and
Np2?¥ areused. The neptunium threshold is around 400 kev. If a significant amount
of the inelastic scattering data is based on this detector, this energy becomes a natural
position for a group boundary.

The above is only illustrative, not all-inclusive. Depending on the particular
subject of interest, one or another group structure may be chosen.

In the present example, there is no special side interest which requires a bunching
of groups, ete. A total of six groups is selected as a reasonable number to work with.
Since most of the neutrons are expected in the neighborhood of 100 to 300 kev, a
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greater density of groups is used in that region. Thus, the following group energy
structure is chosen, and the v;’s are assigned accordingly.

Group No. | Energy interval, Mev L%
1 o—1.4 0.47
2 1.4-0.7 0.31
3 0.7-0.4 0.11
4 0.4-0.2 0.07
5 0.2-0.05 0.04
6 0.05-0.0 0

The v,’s are obtained by integrating the normalized fission spectrum with respect
n

to energy between the limits of the various bands. Of course, 2 vi =1

i=

One now needs to assign group cross sections. The technique used depends on the
accuracy desired and the information available on spectrum and cross sections. One
does not, a priori, know the shape of the flux in each group. Some assumption must
be made, and average cross sections computed. In principle, if the cross sections
are well known as a function of energy, one might get greater accuracy by using a large
number of groups and iterating on the cross sections. That is, assume some flux
shape in each group, find average cross sections, and solve the particular “bare core,”
getting a neutron energy spectrum. Now use this spectrum to reassign average cross
sections in each group, and again solve the bare core problem.

In practice, cross sections may not be too well known, and a reasonable assumption
on flux shape is sufficient. For a fast power reactor, a reasonable flux assumption
for our particular group structure is that the flux is constant with energy in every
group except the first while it resembles the fission spectrum in this energy region.

It is usually convenient to assign average group cross sections to each material,
then combine them in the appropriate proportions. This technique is accurate for
all cross sections except transport, where some difficulties. arise if there are wide
fluctuations within a group. ‘However, for a mixture of elements, such fluctuations
are usually minimized, so that the transport cross section can be given the same
averaging process as the others.

Thus we may write the average fission cross section in group j for material z as

[ or@eE) d

ar,i* = -
/ B o(E) dE

i-1

A similar expression applies for other cross sections of interest.

For inelastic scattering, it is frequently convenient to divide the description of this
process into two parts. - First, the average inelastic scattering out of each group is
obtained. Then a matrix of coefficients is assigned to describe where in energy these
neutrons go. We may write :

-

T (I = J) = Zina*Clsi

where 2,7 is the average macroscopic inelastic scattering cross section out of group !

for material z and
n

Co;i=1
F=TF1

The summation is over all groups lower in energy than group L
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For the materials of the example and the particular group energy structure chosen,
the elastic moderation from any group will contribute only to the group next lower
in energy. The group cross section is, of course, a function of the average loss in the
logarithm of the energy &, the scattering cross section Z., and the shape of the flux
within the group. Again, it is possible to iterate on cross sections or to use approxima-
tions thereon. However, the previous assumption of a flat flux in every group but
the first is quite reasonable for this example.

One possible method of procedure then is to compute a flux-weighted average energy
E; for each group. One may then write for material =

Ezzu,‘.z
In E;/Ejn

A final note on cross sections is that the transport cross section used in the definition
of the diffusion coefficient (D = 1/32,) is the sum of the elastic transport Z,.(1 — po)
and the removal cross sections.

If one goes through the process of obtaining group cross sections and then averaging
them appropriately in accordance with composition, one obtains a set of multigroup
cross sections for the particular core under consideration. For purposes of illustra-
tion, a set of cross sections representative of a small, fast power reactor will be assumed
and two iterations on buckling B? will be made.

Zol mod,§® =

No. group Zer Zy Z. Zin el mod Zremove
1 0.16 0.014 0.0010 0.050 0.012 0.077
2 0.19 0.010 0.0017 0.020 0.006 0.0377
3 0.27 0.010 0.0025 0.012 0.012 0.0365
4 0.28 0.011 0.0037 0.007 0.009 0.0307
5 0.35 0.016 0.0059 0.001 0.009 6.0319
6 0.41 0.026 0.0154 | ..... | ..... 0.0414

. The quantity »; will be taken as 2.5 for all groups. Furthermore, for simplicity,
it will be assumed that the matrix of coefficients which prescribes the destination of
inelastically scattered neutrons is the same for all materials. We take these to be as

follows:
F
w i 2 3 4 5
To

2 0.4

3 0.3 0.65

4 0.15 0.2 0.7

5 0.1 0.1 0.2 0.8

6 0.05 0.05 6.1 0.2 i

As previously mentioned, the elastic moderation for this example is always into the
next lower energy group, so that no corresponding matrix is required.

One makes a first guess on B? usually from previous experience. If no such back-
ground exists, a rough one-group set of cross sections, averaged over .composition, will
give a reasonable first guess, using the formula

vZy — Ze¢
D

In the present example, B2 = 0.01 will be tried for the first iteration. As is shown
in Table 15, the fission source calculated using the first set of ¢;'s is 1.03414. Hence,
the result is 3.414 per cent away from convergence. A second guess of B2 = 0.0105
is made, and this time the result is only 0.95 per cent away from convergence. If
this were not satisfactory, a third iteration would be made.

Bt =



Table 16. Bare Core Multigroup Calculations

$6-9

izl Col. 7 B col. 10
Yi | Zin(l1 =Dt | Tin(Z—> N2 [ Zin(B— D3| Zinld = Dda | Zin(5 > N6 |vi + E Zin(§ = i | Bet mod.jo1 |bio1Zel modijt ~+ 320, | Zed ET + Zai | i = —
) o) col. 9 <ty col. 13
U] (2) 3 Q)] 5) © @ (8) ) 10y | an (12 (13) (14
1edzy ... | b o . 0.47 | L. | 0.47 0.48 [0.077 | 0.097833 4.8041
200.31) 0.09082 | ........ ¢+ ...V o0 L. 0.406082 0.012 0.057649  |0.463731] 0.57 [0.0377] 0.055244 8.3942
3(0.11f 0.072062 0109925 | ... ] oo e 0.291187 0.006 0.050365 |0.341552| 0.81 {0.0365| 0.048846 6.9924
410.07| 0.03603t 0.033577 0.058736 RO 0.198344 0.012 0.083909  |0.282253| 0.84 {0.0307| . 0.042605 6.6249
5(0.04] 0.024020 0.016788 0.016782 0.037099 0.134689 0.009 0.059624 - {0.194313] 1.05 [0.0319 0.041424 4.6908
610 0.0I%OIO 0.008394 0.008391 0.009275 0.004691 0.042761 0.009 0.042217  |0.084978| 1.23 [0.0414| 0.049530 1.7156
E »iBr.idi = 1.03414
j=1
cond iteration. Try B2 = 0.0105
0.47) ... | e ] b b 047 ] .. . 0.47 AP P 0.098875 4.7535
031 09570 | ........ | ... | b L 0.405070 0.012 0.057042 j0.462112] .... |...... 0.056121 8.2342
0.11] 0.071302 0.107045. |} ........ | ... ] ... 0.288347 0.006 0.049405 [0.337752 ... |...... 0.049463 6.8284
0.07| 0.035651 0.032937 0.057359 | ........ | ... 0.195947 0.012 0.081941 0.277888 .... |...... 0.043200 6.4326
0.04| 0.023768 0.016468 0.016388 0.036023 | ........ 0.132647 0.009 0.057893  [0.190540 .... |...... 0.041900 4.5475
0 0.011884 0.008234 0.008194 0.009006 0.004548 0.041866 - 0.009 0.040928 [0.082794 .... |...... 0.049937 1.6580

§
z iZ.ibi = 10095
j=1
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11 SAMPLE CALCULATIONS

The following calculations illustraté the procedures involved in calculating the
material constants and reactivity for a typical lumped reactor. Since the purpose
is to illustrate procedures rather than to arrive at very accurate results, the numbers
involved are carried out to slide-rule accuracy. In making practical calculations it
will usually be found desirable to use-a desk-type calculating machine and to carry
more significant, figures, particularly in calculations of the type covered in Arts. 11.5
and 11.6.

Again, to illustrate procedures, values of some of the reactor constants are cal-
culated even though applicable measured values exist. It should be remembered
that the methods used here are only approximate, and when great accuracy is required,
measured values must be sought or higher order approximations to transport theory
must be used. .

111 Description of the Reactor

The sample reactor is taken to be one moderated by D,0, using as fuel natural
uranium in the form of circular rods 2 cm in diameter, canned in aluminum of 0.05-cm
thickness. The rods are arranged in a triangular lattice, with uniform spacing of
16 em (Figs. 16 and 17). The core of the reactor is a circular cylinder, 200 ¢cm in
diameter and 200-em high, and is surrounded
on all sides by a reflector of pure D20, 30 cm
thick (Figs. 18 and 19). The reactor is assumed
to be at room temperature.

The area of the triangle drawn in Fig. 17 is
110.9 em?. The moderator contained in a tri-

FUEL
(NATURAL U)

MODERATOR '(D,0)

o e

REGION 2

F1a. 16. Section of reactor for sample calculations.  Fig. 17. Cell arrangement for sample
calculations.

100CM " | 130CM
T

260CM . 200CM

.CORE’

CORE

4
D,0 REFLECTOR L-p,0 REFLECTOR

F1a. 18. Horizontal cross section of sample Fia. 19. Vertical cross section of sdmple
reactor. reactor.
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angular prism of this cross section and unit height is associated with the volume of
uranium contained in half a fuel-rod section of unit length (1.571 cm3) and with the
volume of aluminum making up half a can of unit length (0.16 cm?®). From these
numbers the volume ratio of moderator to fuel and the radius of the equivalent circular
cell R, can be computed. These quantities, the atomic density in the uranium region

1 and in the aluminum region Nj; and the molecular density in the moderator
region N, are tabulated below. The density of uranium is taken as 18.5 g/cm? and
that of D,0 as 1.10 g/cms, .

Vol. D:0 _ 110.9 — 1.571 — 0.16¢

Vol. U 1.571 = 694
Vol. Al (x)(2)(0.05)
A = TAEVE00) 01
Vol. U (1) 0.
Rl = 1.00 em

R, = \/L (1:0'9) =84lem

2
N, = (18.5)(0.603 X 102¢)

= 0.0469 X 10** atoms/cm?

238
2
Ny = (1.10)(0.1680(3] X 10%) _ 0.0368 X 10 molecules /om?
24 ‘ .
N; = (2'70)(0'2(;;)?) X 1079 = 0.0603 X 10 atoms/cm3

11.2 Infinite Multiplication Constant k

11.21 - Regeneration Factor 7.1 Designate U2% by the number 25 and U2 by the
number 28; then

»(25)%,(25)
TTnGe 4 zag Y P (060
H25)Nusoy(25) »(25)0,(25)
N150a(25) + N2soa(28)  04(25) + (N2s/N2s)oa(28)
- (2.46) (0.981) (580) = 1.396
(0.981)(687) + (0.993/0.00715)(2.75) ’

11.22 Thermal Utilization f:

Za1 = N1[0.007150,(25) + 0.9930,(28)]

0.0469 X 10%4[(0.00715)(0.981){687)(1072¢) + (0.993)(2.75) (10-24)} 1.1128
= 0.314

[See Eq. (65).]

I

Ner 2.65 )
Zaz = = = 6.57 X 10-% ¢m!? £ Table 1
P T 3L(D,0) T @) (116)F X 107 em™1  from Table 13

Nioa(Al) = (0.0603)(1024)(0.230) (10~2¢) (ﬁg) = 0.0123 cm—!

2113‘

t An inconsistent number of significant figures ia earried in the equations to aid the reader in recog-
nizing the numbers. .

I All cross sections are from BNL-325. Since only ratios of cross sections are involved in computing
7, the 2,200-m /sec cross sections can be used instead of values averaged over the Maxwell distribution.
However, it is necessary to include the correction (0.981) for the departure of the U238 cross sections from
8 1/v variation (see BNL-325).
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Xy = — = —— = 0.00862 from Table 13

R, = (0.632)(1) = 0.632 - . w:Rs = (0.00862)(8.41) = 0.0725
w2 (Re? — Ry?) - (0.00862)(8.41)? — (1)?
B 1y
w2(Re? — R12) Lo0e:R) K1 (o R) + Ko(eaRi) 11 (3e2R)
2R, IR K1 (e Ry) — Ki(eaRo) 11 (x2R1)
0.601 1,(0.00862)K,(0.0725) + K,(0.00862)7,(0.0725)
2 1,(0.0725)K,(0.00862) — K,(0.0725)1,(0.00862)
(1.000) (13.70) + (4.87)(0.0363)
(0.0363)(116) — (13.70)(0.00431)
_ By Io0aRy) _ 0.63215(0.632) _ o, 11024

= = 0.316
2 I,6aRy) 2 1,(0.632) 0.332

x: Ry = (0.00862) (1) = 0.00862 = 0.601

from Table 8

E =

= 1.0067

0.301

= 1.049

"y

-1 +_Vz73+,:"3_z_asp +(E -1 from Eq. (190)
14«al .

(69.4)(6.57 X 107%) + (0.10)(0.0123) B
(1(0.314) ] (1.049) + 0.0067 = 1.0261

=1+ [
= 0.9746

[y e S

11.28 Resonance Escape Probability (p):

1 = (0.0222)(18.5) = 0.411 em™! from Table 10
xz = (0.141)(1.10) = 0.155 cm™?! from Table 11
: )qu = 0411 7¢2R2 = 1304 7{2R1 = 0155

_ 0.155 (70.7 — 1) 15(0.155)K1(1.304) + K(0.155)1,(1.304)

E 2 1 1,(1.304)K,(0.155) — K(1.304)1,(0.155)
= 540 (1.006)(0.370) + (2.00)(0.801) -
77 (0.801)(6.26) — (0.3703)(0.0777)
0.411 1,(0.411) 0.411 1.043
= = =1
F "2 I1,(0.411) 2 0.210 020
S  surface area of U  27R; 2 2
LA - -2 . 2 _0108cm?
M mass of U TRt Ry ((18.5) 8 om?/g

[ Gay,, (E') ii-EIi,' =4+ % = [9.25 + (24.7)(0.108)](10-%¢)

= 11.92 X 10-2¢ ¢cm?/U%% atom by Table 9

N = N1(0.993) = (0.0469 X 1024)(0.993) = 0.0466 X 10% atoms/cm3
fo, = 5.28 X 1072¢ ¢m2/D:0 molecule by Table 11
£, = (5.28 X 10724)(0.0368 X 10%*) = 0.194 cm™!

‘ 1
p=exp| — 7 = by Eq. (206)
= = ~+E -1
Vi stfdu‘”(E') (dE'/E’")
1
= — — —0.0387 —
P [ (69901991020 o 1J ¢ 0.962
(0.0466 X 10%)(11.92 X 10-%) '



6-98 REACTOR PHYSICS [SEC. 6
11.24 Fast Fission Factor e:

xi(thermal) = [_1 = 1—155 %g = 0632  from Table 13
%, = (0.0466)(4.3) = 0.200
T, = (0.0466)(0.29) = 0.0135
S = (0.0466)(L5) = 0.070
%, =0
) = 2.55
x 0.632
a_ 0632 4.6
% 0.200
P’ =0.21 P =021 from Fig. 15

P R R e-97) (0 1723 SN
e—1 - o2, + 20) o by Eq. (207)
ST Ty

(2.55 — 1)(0.0135,/0.200)(0.21)
__ } €2.55)(0.0135) 4 0.070
1 [ 0.200 :l (0-21)

= 0.025

11.26 Infinite Multiplication Constant k:
k = qepf = (1.326)(1.025)(0.962)(0.975) = 1.275

11.3 The Diffusion Coefficients D; and D,

Since the volume of metal in the reactor core is less than 2 per cent of the total
volume, the effect of the metal on the diffusion coefficients is neglected, and D, for
both core and reflector is taken from Table 13: :

D; may bec omputed by Eq. (213). It is evident, however, from the cross section
curves for D and O, that the average values for the scattering cross sections between,
say, 2 Mev and thermal energy are very nearly

(D) = 3.4 X 10~2¢ 3,(0) = 3.6 X 1072

using these average values:

)\;f ]. 1
D, =2 _ 1
T3 73 {{1 — o(D)1Z.(D) + 1 ~ ;zo(O)]E.(O>} *
where By = % by Eq. (11)
1 — &o(D) = 0.666 1 — A0(0) = 0.958

Df=

«

i ]

: 1
[(0.666) (0.0368 X 1024)(2)(3.4 X 10724) + (0.958)(0.0368 X 10%4)(3.6 X 10“")]
1

A avn
* Cin

11.31 The Diffusion Area L? and Age r. By Eq. (211)
L? = L1 — f) = (116)2(0.0254) = 342 cm?

The age 7 for the metal-D,O mixture can be taken to be the same as that for D,0.
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From Table 14,
r =125 cm

11.4 The Material Buckling B,?
The material buckling is given by the modified one-group equation as

k-1 _0275 549 % 104 o2

2 —_— =
Bnm M 467

This is a relatively ia.rge value for which the modified one-group equation can be
expected to give only a fair approximation. The characteristic equation based on the
Fermi age equation is a much closer approximation:

(1 + L*BY)eB® =k
This equation ¢an be solved by trial and error or otherwise to give

Bn? = 5.50 X 107* cm™2

11.6 Critical Size of Bare Reactor

This quantity is not required for the solution of the problem under consideration,
but the computation is included for the sake of completeness. If the reactor is
assumed cylindrical in shape, the ratio of length H {o radius K must be specified
arbitrarily. Assume bere that it is 2.

B = x| (2405)* - «* (2.405)*
O m R? (2R)? R?
B,* = Bn? = 5.50 X 107t em™? by the criticality condition
1 r?
Rt = ——— [— 2.405 2] = 1.500 X 10%
550 X 1074 L 4 +( ) X
R = 1225 cm H = 245 cm

from Table 5

11.6 Reactivity of Reflected Reactor

In the following, the method of Art. 7.1 will be employed. Since the two-group
formulation is less accurate than that of the Fermi age for D:0O-moderated reactors,
the first step will be to determine an effective slowing-down area L; which will make
the two-group material buckling equal to the Fermi age material buckling, i.e.,

(1 4 L*BY(1 + L2B?) = (1 + L*BY)er

82
Lp =% = 1 _ Z 5%0;350_4 = 134.5 cm?

Since the problem must be reduced to a one-dimensional problem, the choice is
arbitrarily made to examine first the radial solution, using an estimated equivalent
bare reactor solution in the axial direction. A guess is made for the axial reflector
saving. Because D:0 is a good reflector, a reasonable guess for the reflector saving
on each end of the core would be just slightly less than the actual reflector thickness—
say 25 cm. The first estimate (which will be reexamined later) for the partial buckling
in the axial direction is, then,

™

2
T . 1580 X 10~ em~?
[200 & 202501 80 X 107¢ em

Axial partial buckling =
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The remainder of the problem consists of adjusting one or more of the reactor
constants to a value which will make the critical determinant [Eq. (144)] vanish.
In the following, k, the infinite multiplication constant, will be varied arbitrarily to
achieve this condition. Although such a variation of % alone is not a physically
possible procedure (e.g., if k were changed by changing fuel enrichment, L? would
also change), the determination of the critical value of k is a useful operation, since a
comparison of k (critical) with k (actual) yields a determination of the reactivity
of the system. To proceed with the calculation, a trial value of k must be arbitrarily
chosen. Since D,0 is known to be an effective reflector and the reflector is relatively
thin, a reasonable first choice is that value of k¥ which would make the reactor critical
if the reflector saving were equal to the reflector thickness. This value of & should be
near the true critical value, but almost certainly a little too small. Thus the direction
to go in choosing a second trial value of & will be known. The specified first trial
value is k = 1.245.

In Table 16 are listed constants which will be used in the calculation ; these have
been evaluated in the preceding sections or are derived from constants evaluated
there. The notation is that of Art. 7. The slight variations from previous notation

are necessary to avoid an excessive number of subscripts in writing the complex
equations involved.

Table 16
Core constants Reflector constants
(region 1) (region 2)
k = 1.245 (trial value) -
Ri = 100 cm R: = 130 ¢em (Fig. 5)
L1, = 342 cm? Las2 = (116)2 = 13,450 cm? (Table 13)
Liy'= 1345 cm? L2s2 = 134,5 cm? ;
Dy, = 0.883 ¢cm Das = 0.883 ¢cm
Diy = l.14cm Dyy = 1.14cm
Zu = Ds/Ls? = 0.00258 cm™? Z2s = 0.656 X 1074 ¢m™1
Z1y = Dy/Lst = 000848 ¢! 227 = 0.00848 em !
x1s2 = 1/Ls2 = 0.00292 cm—2 wn? = 0.744 X 1074 ¢m~?
w172 = 1/Ls2 = 0.00744 cm—2 x2s = 0.00744 cm—?
B2 = 488 X 10-1cm™ Ba? = —x22 = —0.744 X 104 cm?
: [Eq. (109)]
By2 = —0.01085 cm~2 : By'? = —x3;2 = —0,00848 cn—?
[Eq. (110)]
2 .
*= By - (E“J_m_s) = By — 1,580 X 10-¢ —ua? = By? — 1.580 X 10~ = —2.324 X 10+
= 3.30 X 10~¢
—m? = B/? — 1.580 X 10~4 = 0.01101 —pst = B2 — 1,580 X 10-¢ = —0.00864
Z1s + DuBi?
g = et DB o0,
Ziy
Zis + D1B/? Z2s = Dasxas?
s = Bk DB 6 ; : 8y = TR 767
Zir Zay
IR = 1.818 peRy = 1,525
mR: = 10.50 prRi = 9.30 -
usRe = 1,983
urR2 = 12.10

The following Bessel functions will be needed to evaluate the critical determinant:

Jo(IRy) = Jo(1.818) = 0.3295 Ji(IR,) = 0.5818
Ioy(mRy) = 1,(10.50) = 4,500 I,(mR,) = 4,280
Io(ueRy) = Io(1.525) = 1.672 I, (usRy) = 1.0067
To(ueRRs) = Io(1.983) = 2.253

Io(,ule) = 10(930) = 1,44:7 Il(u/R1> = 1,366
Io(usR2) = Io(12.10) = 2.078 X 10¢

Ko(uR:) = Ko(1.525) = 0.2070 Ki(u.R,) = 0.2676
Ko(usR2) = Ko(1.983) = 0.1163

Ko(urR1) = Ko(9.30) = 0.372 X 104 K (usR:) = 0.392 X 10—+
Ko(usRy) = Ko(12.10) = 1.990 X 108
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The critical determinant D is [Eq. (144)}
Jo(le) Io(le)

S1Jo(IR1) Sy'Io(mRy)
Dy IJ1(IRy) — Dyl (mR)

DUSllJl(lR) —D1/S1’m11(7nR1)

Ko Lol = Kol Tulerle) urle) — Kol
o\ MHsll 2 [(AVI321%1
) , [ Ko(iusR2) _
0 Ss [—-10 Gl 1,0 Ko |
_ Ko(u.R2) _ Ko(usR2)
Dt [—‘—10@.&) LuRD) + KauR) | = Das [———~ID(MR2) LuRe) + KR |
0 — 8y Dasus [% LRy + Ki(urRy)

]
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Putting in the numerical values yields

0.3295 4,500 —0.1207 —0.371 X 107+
p =070 =3715 0 0.285 X 10+
0.00934 397 —0.004304 —0.0322 X 10~
0.00428 423 0 0.0319 X 10*

The determinant may be evaluated by expanding by minors. The result is
D = 0.0825 X 107¢

Since D is not zero, the assumed value of % is not the critical value. A larger value
is chosen for the second trial. This is arbitrarily taken to be the actual k of the
reactor core material (k = 1.275). Note that only the elements of the first two
columns of the determinant must be recomputed.. The new value of the determinant
is D’ = —0.095 X 1074 Linear interpolation between D and D’ yields, for the value
of k which will make the determinant zero, £(0) = 1.259. If an extremely accurate
value of k(0) is required, a third trial computation should be made, using the value
1.259 for the trial value of k. The third trial will not be made here.

The value of k(0) is not an accurate value for the critical k of the actual reactor
but is the critical value for the reactor which has the assumed equivalent bare dimen-
sion in the axial direction [H (equiv) = 250 e¢m]. The useful quantity which can be
evaluated with some precision is the radial component of the buckling. The critical
material buckling of the assumed reactor is given by

= (1?4 316?) + N Gar? 4 36?)? + o202k (0) — 1]
2

B =

]

5.20 X 10~* em?

' The axial buckling of the assumed reactor (#/250)2 is 1.58 X 10~ cm?; hence the
radial buckling of the critical reactor must be

Radial buckling = 5.20 X 107* — 1.58 X 107¢ = 3.62 X 10—+

and the equivalent bare radius of the reflected reactor is

2405 126 em
1/3.62 X 104

To obtain an accurate specification of the criticality condition, one must solve the
problem of the cylindrical reactor, bare radially and reflected on the ends (Art. 7.2),
using the above value for the equivalent bare radius. If reasonable guesses wgre
made originally for the axial reflector saving, the two computations (one radial, one
axial) should suffice to determine the critical value of k. If a very poor initial guess
was made, a second radial computation may be necessary, since the two components
of the buckling are not completely independent.

A reasonably accurate value for the critical k can be obtained without resorting
to the axial calculation by assuming that the axial reflector saving (on each end of the
core) is equal to the computed radial reflector saving. This is a rather good assump-
tion if the reflector saving is considerably less than the core dimensions (provided, of
course, the materials of axial and radial reflector are identical). The computed
radial saving is

R (equiv) =

RS = R (equiv) — R (actual) = 126 — 100 = 26 cm
The equivalent bare height of the reactor is, then,
H (equiv) = 200 4+ 2(26) = 252 cm

The corresponding buckling is

_ T \* _ _
Bz=3.62><104+(§5—2) ~5.17X10‘cm’
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and the critical value of k is given by - .
2 o Re )
k (crit) = (’1 + —Bi—2> <1 + ﬁ—) = 1.259
X1y

Xy /2

Because the original guess for the axial reflector saving was quite close, the value of
k(crit) agrees with that of k(0) to within the accuracy of the computation. Obvi-
ously, a change of a centimeter or two in reflector saving has no very great effect on
the reactivity of a large reactor.

The original problem undertaken was to calculate the reactivity of the specified
reactor. This is most conveniently expressed in terms of the excess reactivity
kess/kers, which is given by Eq. (261):

Skerr _ 8k _ k (actual) — k (crit) _ 1275 — 1.259
kesy k k (actual) : 1.275

If it is necessary to make the reactor exactly critical, one or more of its character-
istic properties (e.g., size, enrichment, lattice spacing) must be altered. In making
such adjustments, if they do not change k.ss by more than 2 or 3 per cent, and if they
do not alter the moderator density, it is usually safe to assume that they will not
affect reflector savings appreciably.

= 0.0125

11.7 Solution by Matrix Method

To illustrate the use of the matrix method of solution outlined in Sec. 8, the problem
of the preceding section will be re-solved by that method. The same first guess will
be made for k(1.245), and all the constants listed in Table 16 will be applicable.

In order to construct the @ matrix for the reflector, the following elements are
evaluated, using the constants of Table 16 in the expressions listed in Art. 8.2:

_ Ko(ll/‘Rz)Io(ﬂ»/Rx)

1 1 Ko(usR1) Ko(usRi) L o(psRe)
L -1 , =879

Dy, 14 7 i Kiur) | 5 Kol TausR)

Ky (usR)FolusRe)

_ KO(P’JR'Z)ID(}J'IRI)

1 ’ 1 Ko(p.eRl) Ko(nsRl)Io(ust)
L=t ~ 28.06
Do 1T LKk | Kolw k)

Ky (usR1) o(uaRR2)
1 :
qlps,ue) = 5Dn qur) — q(ps) = 16.87
2 Ly

The Q matrix is (Art. 8.2):
Q= 1 0 879 O
0 1 16.87 28.06

Since there are only two regions involved in the problem, the ¥« matrices for inter-
mediate regions are not required. The following elements are needed for the core
matrix Yeore (Art. 8.4): :

Sll - (—)5153 = 2.818 Elf - _0%826 = —1210
DisXo(m) = Dism iogn”ig’; ~ 0.1138

:ng-‘,’Xc(m) - Q‘Sﬂ‘%ﬁ—% = —0.1067
DyX.(0) = LI4X.(0) = 1.14] 5;%3

Duy .0y = 2.49%.0)
A
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Note that although quantities are available in Table 16 for evaluating X.(I), we
choose to retain it as a variable for the time being. The core matrix is, then,

1 1
2.818 —1.210
—1.14X.(D) 0.1138
—2.49X.() —0.1067

The product QY eore is formed,  giving the matrix

Q¥ = |1 = 10.14X.0) '2.013
ore = 12818 — 89.0X.() —2.300

The condition for eriticality is that the determinant of the @Y core matrix be zero;
ie.,

chre =

1 — 10.14X.(Q) 2013| _ o
2.818 — 89.0X.() —2.300

The course chosen here for determining criticality is arbitrarily to set the determinant
equal to zero and solve for X.(I). This specifies a value of ! which will make the
determinant zero. If the value so determined agrees with the trial value (Table 16),
the condition of criticality has been determined. If it does not agree with the trial
value, criticality has not been found, since no value of ! other than the trial value is
consistent with the other quantities used in the Yeore matrix.

Expanding the critical determinant yields

Ji(IRY)
X.(l) = 0.0394 =
® ToR)
The above equation can be solved quickly by trial and error, giving
! = 0.01902

which differs from the trial value. The easiest procedure now is to use this value
(0.01902) as a new trial value, recompute all the elements of the Yeore matrix, take
the product QYeore, and test again for criticality. To determine the new elements
consistent with the new trial value, recall that

2 .
B =10 (—"———) =1 + 1.580 X 1074
! t\z £oms + X
B2 = —(B:? + xas? + x1s?) from Egs. (109) and (110)
m? = —B,’* 4+ 1.580 X 10~*
ete. .
The new core matrix is
1 1
2.79 —1.206
Yecre = "“114X¢(l) 0.1138

—245X%.()  0.1064

Formation of the product Q¥ cr. and determination of the value of X.(l) correspond-
ing to a zero value of the determinant give

X.() = 0.0392 ! = 0.01900 2 =361 X104
+ The product of two matrices, for example,

ai a1z a3
a6 ={lan a2 au

al G2 G

bir bz
and b = | ba1 b2z
b‘l blz
is defined as
(@21b11 + G22ba1 + arsbsi)  (@2ibiz + azabas + azibas)
(@sbir + Gazbn + anbu) (anbiz + asber + assbsr)

Two matrices can be multiplied only if the number of columns of the first is equal to the number of
rows of the second.

! (aubit + aizbar + aba)  (aubiz + aida + aubu)l
ab =
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This value of ! is sufficiently close to the trial value to make further iteration
unprofitable unless the computation is carried to larger numbers of significant figures;
it is, incidentally, in satisfactory agresment with the value obtained in the previous
calculation (Art. 11.6).

The eritical value of k may be determined by adding to 2 the value of the axial
buckling (1.580 X 107, to obtain B,? and solving for & in Eq. (109).

12 LUMPED THERMAL ABSORBERS IN THE REACTOR

Many practical cases arise in which it is necessary to know the effect of an absorbing
object of macroscopic size in the reactor. Typical cases are slugs for the production of
radioactive isotopes, experimental apparatus for investigation of radiation effects,
and control rods. )

Usually the information desired is the rate of absorption of neutrons in the absorber
for a given level of average neutron flux in the reactor. Often the effect of the
absorber on reactivity is also desired. It is always true that if the absorber has
macroscopic thermal absorption cross section Z,, and if the thermal neutron flux
is ¢, at some point in the absorber, then the rate of absorption per unit volume at
that point is

Rate of absorption = Za¢s neutrons/(cm?) (sec) (222)

Unless, however, the absorber is both smail and only weakly absorbing, it cannot be
assumed? that the flux at the absorber position is the same as that which would
exist at that position if the absorber were absent.  In general the absorber will depress
the thermal flux in its vicinity, and the true rate of absorption can be determined only
by a computation which evaluates the effect of this flux distribution.

A general treatment of the absorber problem is impractical here, for on the one
hand, diffusion theory is inadequate for the treatment of very small (but highly
absorbing) absorbers, while on the other hand, the treatment of large absorbers can
become very complex if the geometry of the absorber-reactor combination lacks
symmetry. Some relatively simple but useful specific cases are treated below.}

12.1 Absorbers in Infinite Medium

The computation of absorbers of simple shapes in infinite diffusion media is rela~
tively simple. For these cases the absorption rate is evaluated in terms of the thermal
neutron flux in the medium infinitely far from the absorber. In many cases this
computation .can be used as an approximation for the more difficult case of the
absorber in a finite reactor by methods discussed below.

To evaluate the absorption we consider the two-region problem, the absorber
being region 1, the infinite diffusion medium being region 2, and the origin of coordi-
nates being at the center of the absorber. There is a uniform source of thermal
neutrons of strength S; neutrons/{cm?)(sec) in region 1 and a uniform source of
strength S neutrons/(cm?)(sec) in region 2. Practically, 8; and S; are just the slow-
ing-down densities into the thermal-neutron group in region 1 and region 2, respec-
tively. - For the infinite medium, since all neutrons slowed down: are eventually
absorbed, S; = ¢.Zsz, Where ¢. is the value of the thermal flux infinitely far from
the absorber and Zs; is the macroscopic. absorption cross section in region 2. It is
assumed that the absorber is small enough that it does:not produce a significant
perturbation in the fast neutron density.§ If, then, for example, the slowing-down
properties of the absorbing material are the same as those in region 2, 8, = §.. A

t The assumption is very poor if the absorber thickness is comparable to an absorption mean free
path. If the thickness is equal to & small fraction ¢ of an absorption mean free path, then the assumption
of no perturbation of flux by the absorber will lead to a fractional error of the same order of magnitude
as €.

1 Many cases of thermally black cylindrical absorbers are treated in Ref. 12.

§ That is, its smallest dimension is a small fraction of a slowing-down length (\/;) in the absorber
material. If this condition is not met, the fast flux distribution must be taken into account by, for
example, a two-group calculation (see Art. 11.22).
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case of frequent occurrence is that in which the absorber is a material of much higher
atomic weight than that of region 2. In such a case, S; may be taken to be zero.

Under the conditions outlined above, the thermal-neutron flux in both regions
satisfies the equation (the group notation of Sec. 7 is used here)

D,v*¢: — Z,0. + S =0
or Vi, — x2ps + Dﬁ =0 (223)

where D, and Z, are the diffusion constant and the absorption cross section, respec-
tively, for thermal neutrons in the appropriate region and »* = Z,/D,. .

For an absorber in the shape of an infinite slab of half thickness 7" or an inﬁnitely
long cylinder of radius R or of a sphere of radius R, the thermal fluxes ¢, and baz in
regions 1 and 2, respectively, are given by equatlons of the form

b = xX + (224)
Eu
S

Per = A.Y + — (225)
2’32

Table 17 gives the values of the constants A4; and A, and the functions X and Y for
the three geometrical cases.

Table 17. Flux Distributions for Absorbers in an Infinite Medium with Uniform
Source of Thermal Neutrons

Type Region | Region 2
¢sy = A1X + ﬂ ¢.|2 A:Y + —_
Zy
X Y
Slab cosh az cosh xez — sinh xez
Cylinder  Io(ar) Ko(oar)
Sphere sinh »r cosh »xor — sinh xor
r r
A1 4,
Slab 82/Zsy — 81/35 _ A1Dsyxy sinh aT
cosh 3T + (Deyxr/Dagxs) sinh saT Degrr(cosh 22T — sinh »2T) .
Cylinder 82/Zsg — S1/Zsy _ A1Dappali(aR)
: Lhi(xaR) + (Da17‘1/D12X*)[Ko(xZR)/Kl(XZI{)]Il(’ﬂR) DisgrsK1(x2R)
Sphere 8:/Zay — $1/Z0; _ A1Ds (Rx1 cosh xiR — sinh xtR)
(sinh x1R)/R + [Ds;(Rx1 cosh xiR — sinh x1R)/DsyR(1 + x2R)] Disg(l 4+ »x2R){cosh xsR — sinh x2R)

The relation for the flux in the absorber having been established from Table 18,
the rate of absorption at any point in the absorber can be computed by Eq. (222).
If, however, only the total rate of absorption by the absorber is desired, it may be
evaluated by taking the derivative of the flux at the absorber surface and computing
the density of neutron current into the absorber by Eq. (5):

J = —Dgrad ¢ neutrons/(cm?)(sec)

For the one-dimensional cases considered in Table 17, grad ¢ is just d¢/dzr for the
slab and d¢/dr for the cylinder or sphere.

If the absorber is “black” to thermal neutrons, both =, and x, in Table 17 become
infinite. If the equations are used for such a case, the extrapolation distance ¢ should
‘be applied (Art. 2.22). The effective boundary between regions 1 and 2 then lies
at T — e or B — ¢, as the case may be. For black boundaries of large curvature the
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Table 18. Flux Distributions around Black Absorbers in an Infinit

e Medium with Uniform Source of Thermal Neutrons

Geometry of
absorber

e

Infinite slab
Half thickness = T
Origin of coordinates at center

Infinitely long cylinder
Radius = B
Origin of coordinates at center

Sphere
Radius = R
Origin of coordinates at center

Thermal neutron flux,

Current density into absorber surface,

neutrons/(cm?) (sec) neutrons/(cm?)(sec)
o) = iz . (cosh x2x — sinh xz:c_) 8 HT) = ~ Sz
sy (o2 + 1) (cosh x2T — sinh w2T) Zag' xalexz + 1)
or
_ S e N2T -, S
s = Zeo (o2 T Ne~ 1T por
S Ko(x
o0 = _l___,ﬁ"_")__——-.{_ _S_’. J(R) = — ______;S’_______.
Sog Ko(xaR) + exeK1(x2R) Zag - xefexa + [Ko(x2R) /K1 (x2R)}}
o) = ﬂ_lg cosh xer — sinh xer . : -§1 JR) = — ] Sy
Begr [ex2+ 1+ (e/R)I(cosh x2 I — sinh x2R) Zay] xofexs + (Rxa/1 + Rx2)}
or
&) = S: B e —x2r Sa

oL . i S e
Topr lew2 -+ L+ (e/R)le ut + Tso
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more rigorous boundary condition is, however, ¢.’/¢: (boundary) = 1/e. Table 18
gives the flux distribution in region 2 with this condition for the three absorber shapes
considered. The table also gives the current density into the absorber surface.

It is evident from Table 17 that the effect of the absorber on the flux in medium 2
falls off rapidly with increasing xsr (or r/L, where L is the diffusion length) and, even
for black absorbers, becomes small at about three diffusion lengths from the absorber.
The infinite-medium case may be used as a reasonable approximation to the case of
an absorber in a finite reactor provided the undisturbed flux distribution in the reactor
(i.e., the flux distribution before the absorber is installed) does not amount to a large
flux variation over the region in which the absorber, when installed, will influence the
flux distribution strongly. The infinite case is often used as a rough approximation
even when this condition is not fulfilled. When the finite approximation is used,
it is common practice to assume that the equivalent uniform source strength S, for
the infinite case is just equal to the undisturbed slowing-down density at the point
in the finite reactor where the absorber is to be installed. An alternate procedure,
which makes some allowance for the leakage of thermal neutrons out of the reactor,
is to evaluate an effective source strength by setting S; = ¢Z,,, where ¢ is the undis-
turbed thermal-neutron flux at the point where the absorber is to be installed. .In
either case a more accurate procedure (frequently not justified because of other
inaccuracies) is to use, for the equivalent infinite value of Ss, the average value
obtained by averaging numerically the value of S; for the undisturbed finite reactor
over a region extending two or three diffusion lengths around the point of installation
of the absorber. »

A rough estimate of the effect of the absorber on reactivity of the finite reactor can
be derived from solution of the infinite case if the spatial perturbation relations are
utilized (see Sec. 14). A possible procedure is as follows:

1. Evaluate the absorption rate a of the absorber. If the absorber is a sphere, a
would be the total absorption rate; if the absorber is a cylinder, a would be the absorp-
tion rate per unit length.

2. Compute an equivalent thermal absorption cross section Z., where

a

e = - - 226
¢ X (vol. of absorber over which a is computed) (226)

and ¢ is the average thermal flux in the wndisturbed reactor in the region where g is
computed.

3. The absorber can then be treated, by perturbation theory, as an absorption cross
section of magnitude Z,, distributed in the reactor over the volume occupied by the
absorber.

.

12.2 Absorbers in Regular Array

Occasionally the case occurs in which identical absorbers are arranged in a regular
or nearly regular array over the reactor or over some region of the reactor. For such
a case the absorbers can be treated by the same methods as those used for calculation
of the thermal utilization in a lumped reactor in Art. 9. First the region occupied
by the absorbers is divided into cells symmetrical about the absorbers; the approxima-
tion is then made that the region occupied by the cells is infinite in extent. A “thermal
utilization’” faps is then computed for the absorbers in exactly the same way as the
thermal utilization f was calculated for fuel lumps (Art. 9): Usually for these cases
the total absorption of thermal neutrons by the absorbers is small compared with that
of the other reactor materials. When this is the case, the relation can be written

Absorption by all other materials (including fuel) _ 1 1
Absorption by “lumped’’ absorbers Savs

and an equivalent absorption cross section Z, can be assigned to the lumped absorber.
The quantity Z, is that cross section which, if treated as uniformly distributed, will
result in the same fractional neutron absorption as that of the lumped absorbers.
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It is given by

Z, = Ereactur ('L - 1) (227)
faba

where Zreactor 18 the total absorption cross section (or, in the case of ““lumped” reactors,
the effective absorption cross section) of all materials except the absorbers in question.
After the effective cross section is determined, the absorbers may be treated as uni-
formly distributed, with absorption cross section 2., for computation of both their.
total absorption and their effect on reactivity.

Frequently the region occupxed by the array of absorbers does not extend over the
entire reactor core but is symmetrically located in the core. In such a case, the
properties of the region occupied by the array can be computed as indicated above,
and the reactor may be computed as a symmetrical, multlreglon problem, using the
methods illustrated in Art. 7. Often the use of reflector savings will reduce such a
problem to a two-region problem.

In the case of absorbers-‘“black” to thermal neutrons the cell problem of most
frequent occurrence is one which is symmetrical in cylindrical coordinates. . In this
case, the problem and its solution are stated as follows:

The absorber is a cylinder of radius R;; the surrounding “cell” has radms R,.
In the surrounding cell, there is a source density of thermal neutrons, assumed to
be of uniform strength = ¢ neutrons/(cm3)(sec). This source is just equal to the
slowing-down density into the thermal energy group. The source strength is taken
to be zero in the absorber., The boundary condition at the absorber surface is
(1/¢)(d¢/dr) = 1/¢, where ¢ is the thermal flux density and ¢ is the extrapolation
distance (see Art. 2.22). The thermal flux ¢ in the cell outside the absorber is a
function of the coordinate r, measured radially from the center line of the absorber,
and follows the equation

2y — w4+ 4 =
Vip — x’¢ + D
The solution is
() = GIK (R [o0er) + LixRo)Ko(Ger)] + L

8

where =, is the macroscopic absorption cross section for thermal neutrons in the
material surrounding the absorber and G is a constant whose value is given by

= q/2,
ex[K (R (xRy) ~ Ii (R K1 (xR ~ [Ki(R)To(eR1) — In(xRs) Ko(xR1)]

The current density into the absorber is

D q 1
R)y=-==]1
J(E&) <z | T BRORI LGRS = LR KGR

K (xR)Io(xR1) + I1(xR2)Ko(xRy)
where D is the thermal-neutron diffusion constant in the material outside the absorber.
The “thermal utilization” fa.s of the absorbers is given by

Fore = 2= R\J(Ry)
& T (R — RpY)

-1

12.3 Central Absorber in Bare Reactor

If the absorber is so shaped that the geometry of the absorber-reactor combination
exhibits a high degree of symmetry, the problem can often be solved in as much
detail as is desired by use of the group methods. The problem of this type which
occurs most frequently is that of a central cylindrical absorber passing axially through
a cylindrical reactor. The solution for such a system, treated by the two-group
approximation, is given in Art. 7.5. The case of a bare reactor is considered. If a
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reflected system is to be computed, the reflector saving can be computed first without
the absorber and can be assumed to be unchanged by the presence of the absorber.
This assumption is adequate unless the absorber diameter is an appreciable fraction
of the reactor diameter.

The procedure is to solve the criticality problem for the reactor containing the
absorber. The rate of absorption in the absorber can then be evaluated, if desired,
from the thermal flux distribution which is obtained in arriving at the solution. The
effect of the absorber on reactivity can be found by comparing the eriticality condi-
tion (e.g., eritical k) of the reactor containing the absorber with that of the reactor
without the absorber.

13 NONCRITICAL REACTORS

If the neutron balance in a reactor is such that exactly one of the neutrons emitted
in a typical fission reacts with a fissionable atom to produce a subsequent fission, the
reactor is said to be critical. If in a critical reactor there are no extraneous sources
of neutrons, the neutron population will remain constant in time. This section deals
with the behavior of reactors which are not critical. In general, the neutron popula-
tion of such a reactor, if not zero, will vary with time (exception—subcritical reactor
with source; see below).

13.1 General Concepts and Definitions

<. If the reactor, although not critical, is nearly so, the spatial distribution of neu-
trons in it will be very nearly the same as in the critical reactor. The general sig-
nificance of quantities used to specify the characteristics of noncritical assemblies
can best be appreciated in terms of such cases, which are also the ones occurring most
frequently in practical problems. These quantitiest k.ss, ke, and p are alternative
descriptions of the relation between the number of neutrons in a given generation of
the chain reaction and the number in the immediately succeeding generation. The
effective multiplication factor k., is just the ratio of these two numbers:
_ No. neutrons born in (n + 1)st generation

kess = : - 228
" No. neutrons born in nth generation ( ‘)

The excess multiplication factor k. is

[ No. neutrons born _ { No. born in )
oo = kuyy — 1 = in (n 4+ 1)st generation nth generation
” o No. neutrons born in nth generation (229)

_ No. extra neutrons produced per generation
No. neutrons starting the generation

The reactivity p is
kQZ

= (230)
kers
The value of k.;, in terms of the characteristic reactor quantities (Sec. 5) is
kP..(E,,B?)
kopf = ———T—= 231
= 50 + LB @3
where B? corresponds to the fundamental mode in the solution of the wave equation
Vi¢ + B2y =0

for the reactor with proper boundary conditions, ~ Equation (231) may be regarded
as the definition of k., for reactors which can be described by an equation of that
type, irrespective of whether or not the reactor is near criticality.

T The use of these symbols follows that of Weinberg and of Glasstone and Edlund. Other usages are
extant.
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Evidently, by Eq. (229), if an average time between gencrations of neutrons lav
(the average generation time) could be specified (and if the spatial distribution of
neutrons in the reactor were independent of time), the time dependence of neutron
density n in the reactor would be given by

dn keox
—_—=n
dt lavg

(232)

kez
n = ng expl 1

avg

Because a fraction of the neutrons are delayed (i.e., emitted in the process of radio-
active decay of fission products), it is possible to specify an average generation time
‘only if k.. is very small (about 0.0004 or less) and if k.. has been constant for some
time. In general, the time behavior of the neutron population is a complicated
function of reactivity, the delayed-neutron characteristics, and the prompt neutron
lifetime (see Art. 13.2 and Sec. 8-1).

If an extraneous source of neutrons, S neutrons/sec, is introduced into a subcritical
reactor, the neutron flux in the reactor will, after a time, reach some steady value.
In this condition the production of neutrons by the source plus fissions is just balanced
by the loss of neutrons by leakage plus absorption. If the reactor is nearly critical,
the number of neutrons produced per second is, by relation (228), § directly from the
source plus Sk.;s from the immediately preceding generation plus S(k.ss)? from the
generation before that, ete.; i.e.,

No. neutrons born per sec = S(1 + kers + kers® + kegs 4+« = %)
. - (233)
1 - ke//

In other words, the source production is increased by a factor 1/(1 — kess) by the
poncritical chain reaction. This factor 1/(1 — kess) is sometimes called the mul-
tiplication M of the reactor. - Strictly speaking, the source is multiplied by this
exact factor only if the source is distributed throughout the reactor in the same way
as the fissions are distributed in the critical reactor (i.e., according to the solution of
the wave equation _

vip + B2¢p =0

However, if the reactor is not much suberitical, and if the source is located well inside
the core, the above expression for'the multiplication will hold to within a factor of
2o0r3.

13.2 Kinetic Behavior of a Bare,} Near-critical Reactor with Delayed Neutrons

The emission of delayed neutrons accompanies the 8 decay of a certain small group
of fission products. The rate of emission by each member of the group of delayed
emitters decreases exponentially with time after fission.. There. are six species of
fission products which emit delayed neutrons in sufficient quantity to have an impor-
tant effect on reactor kinetics. The fraction of total fisston neutrons emitted by the
ith member of the group of delayed emitters is designated by the symbol 8;, the decay
constant of the emitter is designated by \;, and the concentration of the emitter per
unit volume of reactor by C;. Thus, if an instantaneous burst of N fission neutrons
per unit volume of reactor were to occur at ¢ = 0, the concentration C; of the ith
emitter species resulting from the burst would vary with time as

C; = NBe ! (234)
and the rate of emission of delayed neutrons per unit volume by that emitter would

+ Although the following discussion is based on bare reactor concepts, the results are applicable to
simple refiected reactors provided an appropriate value is used for the effective neutron lifetime.
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vary as

(N’o. delayed neutrons of ith species emitted)/(sec) (unit volume) = NC; = NABie M
(235)

Values of A\; and 8; are tabulated for thermal-neutron fission of U235 in Tables 1 to 4
of Sec. 8-1 and Table 39 of Sec. 1-1.%

The number of prompt fission neutrons produced per unit volume per second in a
reactor operating with a thermal-neutron flux density ¢ is (k/p)Z.¢(1 — 8), and if
the concentrations C; of all the delayed emitters are known, the rate of emission of

delayed neutrons per unit volume can be specified as 2 Cini.  If the reactor is

1
sufficiently near criticality that the spatial distribution of flux does not differ sub-
stantially from that which would exist in the critical reactor, the leakage of neutrons
can be expressed in terms of the geometrical buckling B? of the critical reactor.} If
the assumption is made that the effective energy of the delayed neutrons is the same
as that of the prompt ones,§ the slowing-down density in the reactor will be

0 = [Eze0t =) + ), e ] P (236)

where P.(E, B:) is the Fourier transform of the infinite slowing-down kernel (see
Art. 5.3). - The balance equation which holds for thermal neutrons at every point
in the reactor is

_ DB — Zup + [ el — ) + Z O | PuE, By = T 2 148 o)

where v is the average velocity of thermal neutrons. Applying the definition of k.;s
[Eq. (231)] and the relation L? = D/Z,, Eq. (237) reduces to

_ _ Kess - __l___ d¢
Veers(1 = 8) — 1o +p " z Coxs (1 + LBz, d

(238)
The quantity 1/[(1 4+ L*B%)vZ,] is the effectlve lifetime of thermal neutrons in the
finite reactor (see Art, 13.3) and is designated by the symboll. To specify completely
the variation of ¢ with time, Eq. (238) must be coupled with the six differential
equations which specify the variation of the concentration C; of the six delayed-
neutron emitters. The complete set of equations becomes

[ks!f(l - B) — 1l¢ + pkdﬂE Cini = (‘li;b
dc, (239)
o -G + B. o

It is quite easy to obtain the solution of Egs. (239) in the asymptotic case for which
the reactor has been in a state of constant positive excess reactivity for an effectively
infinite time. For this case ¢ and all the C; are increasing exponentially thh a con-
stant period | 7', whose value is to be determined.

Assuming ) .
: ¢ = Ae/T C; = a;e”T
dé _ A p 40 _ i g

a T dt T

T See also Ref. 14. For delayed-neutron data on other isotopes, see Refs. 15 and 16. Table 5 of
Sec. 1-1 lists other data contained in this handbook.

1 Many practical reactor kinetics problems concern reactors which are not far from eriticality, for
which this approximation is valid. For the more general case, see Ref. 13.

§ This assumption should be examined critically for cases in which extreme accuracy is necessary, as,
for example, when reactor periods are used for the measurement of reactivity changes.

§ This result is to be expected on physical grounds; mathematically it results from the complete
solution of Eqs. (239).




Sec. 6-2) REACTOR CALCULATIONS 6-113
substitution in Egs. (239) yields

' A k
o = [(1/7") T x,-] P2
Mg L
and (1 — Bkerr — 1+ ke/fZ AR (240)

1

recognizing that g = 2 B:, Eq. (240) can be reduced to

1

herr — 1 l Bi/T
AL = e e RV 241
ks Thay | L UT) N (241

This equation, often called the inhour equation, relates the asymplotic or stable reactor
period to the reactivity [note that (kers — 1)/ kers =0 = reactivity]. It is a simple
relation which is much used in experimental reactor physics for evaluating reactivity
from the measured reactor period. Figure 20 gives T'as a function of p for two values
of the lifetime 1. Also plotted is the curve for I = 0. Note that curves for other

103

\(, 2= 10°SEC

ot
- , p=107*sECI ) \

STABLE REACTOR PERIOD, SECONDS

AN
\\
102 Bo Ne
6 —
4
2
1073 L
1074 2 3 4 6 81073 2 3 4 6 81072 2
. Ken—t
kc”

F1a. 20. The Inhour relation (delayed-neutron data). .
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values of ! can be casily constructed from the latter curve simply by adding the
term Z/Tkef/.

Tor values of p which are greater than 8, the period becomes very short and the
term (1/7") becomes large compared with ;. When \: can be neglected, Eq. (241)
reduces to v

1 z 1
p = Thors + ,- Bi Thoy +8
l
or T = ——— (242)
kets(e — B)

This approximation is usually good for p > (8 + 0.0025).

In addition to the single positive value of T which -will satisfy Eq. (241) (for a
positive p), there are n negative values which will also satisfy the equation (n is the
number of delayed-neutron groups). Thus the complete solution of Egs. (239), for
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F1G. 21. Time- variation of neutron flux ¢(¢) after instantaneous application of reactivity p
to critical reactor operating at steady flux ¢o. I =1 X 1074 sec.

the case in which p is constant after assuming some initial value at time ¢ = 0, is a
sum of exponentials:

b = AggtTo + A1et/Ti 4+ + + Anpet/Tn (243)

Tor p positive, T and A, are positive and T is equal to the asymptotic value dis-
cussed above; all the other A’s and T's are negative. For p negative, To and all the
other 7"s are negative and all the A’s are positive. This general solution is discussed
at length in Sec. 8-1 and in texts on reactor theory (e.g., Glasstone and Edlund). The
results for a particular value of [ (1074 sec) are plotted in Fig. 21.

Since the general solution of Egs. (239) for any particular ! involves considerable
labor, it is useful to find approximations which can be used when only rough values are
needed. A very crude approximation to the solution for positive instantaneous
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changes in reactivity can be made in the following way: The problem is assumed to
be that of determining the variation of flux in a reactor which has been operating for
an effectively infinite time at constant flux ¢o prior to the time fo, when the effective
multiplication constant is increased instantaneously from the value 1 to the value
k.; > 1 and is maintained at that value for all time later than to.

Just prior to the reactivity increase delayed neutrons were being formed at some
steady rate such that their direct (unmultiplied) contribution to the flux ¢o was ¢ob.
The value of the prompt effective multiplication constant was (kes/)prompr = 1 — B
The prompt multiplication (Mprompt) was 1/(1 — (Kess)orompe] = 1/8. Thus the flux
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Fie. 22. Time variation of neutron flux ¢(t) after instantaneous application of negative
reactivity p to critical reactor operating at steady flux ¢o. 1 =1 X 107*sec.

#o can be considered to arise from the prompt multiplication of the delayed-neutron
source. This concept is illustrated by the identity

_ (flux due directly ) (pfompt )

o = to delayed sources/ \multiplication

For a short time after the effective multiplication constant is incrcased to the new
value k.rs, the flux due directly to delayed sources will remain nearly at the old value
#o8.  The prompt multiplication will, however, have increased to the value

1
M rom = —_—
G T I
Consequently, the total flux will be expected to rise rapidly to a new value ¢y, given by
b0 ¢

[ (244)

I ) T PP
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Quite evidently the approximation does not apply if k.. > 8. For smaller values of
k.. a Tough approximation to the kinetic behavior can be made by assuming that the
flux rises instantaneously to the value given by Eq. (244) and thereafter follows the
asymptotic variation, as given by Eq. (241). Such a curve is drawn in Fig. 21 for
comparison with the correct curve.

The kinetic behavior of the neutron flux for negative values of reactivity is not
strongly dependent on [ after the first few seconds. Thus the curves for negative p in
Fig. 22 can be used for other values of l except during the period of rapid flux decrease.

13.3 The Effective Neutron Lifetime

In the development of Eq. (238) the time required for neutrons to slow down was
neglected; consequently the effective lifetime [ which appears in_the equation is
really the effective lifetime of thermal neutrons In. The physical interpretation of
the expression for ln is as follows: The number of neutrons absorbed per unit volume
per second, if the steady neutron density is =, is

" Absorption/(cm?3)(sec) = nvZq
The loss of thermal neutrons by leakage is [Eq. (102)]
No. thermal neutrons leaking from 1 cm3/sec = nvZ.(L2B?)
neutron density
(loss of neutrons)/(cm?)(sec)

n 1

= z.(L + L*BY)  uZ.(1 + L2B?)

Lffective thermal-neutron lifetime =

(245)

" The true effective neutron lifetime is made up of the effective thermal lifetime plus
the effective fast lifetime. Equation (254) is the correct expression for the effective
lifetime in the two-group approximation. If the reactor is bare and if its properties
are uniform, Eq. (254) reduces to

B U S WY
17.]0,,2“ ¢]* DrkpZas b

From Egs. (92) and (252),

2 * 2
¢ _ L+ DB ﬁ;=2/+D/B
Pe Zs @7 2y
If the small difference between k and k, is neglected and the reactor is near enough
criticality that the characteristic equation (87) may be assumed to hold, the equation
for ! becomes )
I = ! + :
5:Zas(l + L2B%)  5;Zas(1 + Ls*BY)

(246)

where 7, is the average velocity of the thermal neutrons, ¥y is the average velocity of
the fast neutrons, T, is the macroscopic thermal absorption cross section, and Z, is
the macroscopic ‘‘slowing-down cross section.” :

If the reactor is reflected by a material having a thermal-neutron lifetime much
different from that of the core, the effective lifetime for the reactor may be significantly
different, from that for the equivalent bare reactor. Equation (254) may be used to
determine the effective lifetime for this case. Since, however, the integration of the
flux and adjoint functions over the reactor volume may be quite tedious, an alternate
method is sometimes useful. The effective fast lifetime, which is usually a small
fraction of the total lifetime, is taken to be that of the equivalent bare reactor, as
given by the last term of Eq. (246), and the effective thermal lifetime is computed
by a scheme devised by R. P. Feynman, which proceeds as follows: It is assumed that
the criticality condition for the reactor has already been determined by the methods of
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Art. 7 or 8 or by some other methad. A small amount of 1/v absorber is then added
uniformly throughout the reactor (core plus reflector). The average macroscopic
absorption cross section due to this added poison is designated 2,,. The poisoned
reactor is then solved by some convenient method (Art. 7 or 8), and its effective
multiplication constant (k.ss) is determined. The quantity k.;, will, of course, be
less than unity. Since the prompt neutron lifetime s to be determined, it is assumed
that all fission neutrons are prompt. Then, by Eq. (232), the rate of change of flux
at any point in the poisoned reactor where the instantaneous value of flux is ¢ is

de _ dlkes — 1)
dt i

Recalling, however, that the reactor would be eritical (and flux constant) except for
the presence of the added poison, one concludes that the rate of decrease of neutron
density is just equal to the rate of absorption by the added poison and the rate of
change of flux is

d¢ _dn _
fe o 528 = —pes,
dt "o D Zor
Equating the two rates of change of flux above yields
b =1 = —pe3,,
| = — boy =1
PZap

Or, more generally, if the uniform addition of thermal-neutron absorber of average
. macroscopic cross section 5., results in a reactivity change Ak.sy, the prompt thermal-
neutron lifetime 1 is

= — Sh )

Zap

Note that the above reasoning involves the tacit assumption that the addition of the
thermal absorber does not change the flux distribution to an important extent. This
can be true only if the amount of absorber added is quite small.

14 PERTURBATION RELATIONS

It is often useful to evaluate the effect on reactivity of small changes in the proper-
ties of an initially critical reactor. Perturbation theories have been developed which
give approximate evaltiations of such small changes, whether the changes be localized
in space or distributed over the entire reactor. Perturbation treatments can be
based on any of the group formulations of the reactor equation. Only specific
formulas from the simpler treatments are given here. For general treatments and
for the theory of the method other sources should be consulted (e.g., Refs. 7, 17,
and 18).

14.1 TFirst-order, Two-group Perturbation Formulas

The first-order, two-group perturbation theory was first published by L. W. Nord-
heim (CP-2824). This form of the theory is the most widely used in thermal reactor
calculations. In the development of the formulas certain terms involving second
orders of small quantities are neglected, but the major assumption is that the perturba-
tion does not change significantly the flux distribution in the reactor. This condi-
tion can generally be used as a criterion of the applicability of the method.

In deriving the expression which evaluates the perturbation in terms of reactivity,
the period of the perturbed reactor is first determined formally, and the period is
then related to reactivity by means of the inhour equation [Eq. (241)]. Thus the
starting point of the development is the time-dependent, two-group reactor equations
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(the notation of Art. 7.1 is used here)

1 9¢s

D,V — Zups + Zyy = = 22
t, ot
1

Dy vi¢; — Zr¢ps + kpZaths +2 Civi = by %bt—f (248)
D
aC;
il Bikposdps — Civi

where kjp is the prompt infinite multiplication factor [k =k, <1 + E B;) ]
i
It is assumed that the solutions for the fluxes are separable into space-dependent
and time-dependent terms, the latter being exponentials of reciprocal period ».

Lquations (248) can then be written

Da V2¢s — Xy¢s + 2!¢f = l s

”e . 5 (249)
Dy Vigr — Zry + kpZatps = v (—1 + ka.z By —— )
vy < v+
1
The adjoint functions ¢;* and ¢,* are defined by the equations ‘
* ok * _ #s* x«_ Bi
D, V2¢* — Zups* + kpZspr* = » + kpZs ) pp*
Us . - v +
' . ¢ (250)

vos
vr

Dy vigs* — Zydr* + Zrge*

No discussion of the general significance and properties of the adjoint functions will
be given here; the approach will be taken that they are simply functions useful in the
evaluation of perturbation effects. It can be shown that identical values of » satisfy
Egs. (249) and (250) and that both equations define the same criticality condition
(v = 0). The procedure for determining the effects of small perturbations on the
critical reactor is as follows:
1. Write out the two-group equations for the fast and slow fluxes (¢; and ¢,) in
the critical reactor:
Da Vz¢a - Zad’a + Ef¢/ =0

251
Dy Vs — Zrgpy + kZo¢ps = 0 @0

and the equations for the fast and slow adjoint functions (¢;* and ¢.*) in the same
critical reactor: ‘
Dy V2p* — Z,¢s* + k2% = 0
Dy Vi¢r* — Zres* + Zrgs* = 0

2. Solve the flux equations (251) for the critical values of the buckling B? by the
methods of Arts. 7 or 8, and write out the solutions for the fast and slow fluxes as
indicated in those articles.

3. Using the critical value of the buckling determined in 2 above, determine also
the solutions for the fast and slow adjoint functions ¢,* and ¢,*. Note that Eqs. (252)
are identical in form with Eqs..(251), the only difference being the changes in coeffi-
cients of the final terms. The methods of solution for ¢;* and ¢.* are therefore the
same as those used in the solutions for ¢, and ¢,

4. The values for the fluxes and adjoint functions having been obtained as func-
tions of position over the entire volume of the reactor (core plus reflector), the effect
on k.ss of local changes in any of the reactor properties can be evaluated in terms of
these functions. The total effect on k.;; can be evaluated by integrating all the
local perturbations over the entire volume of the reactor. - The expression for the

(252)
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total fractional change in kess, 8Kess/Kers, 18

L ! {j (D *3(kZs) ~ Pas™® 82,
reactor volume

hess f knZadebs* do
core volume .

- (bres® — brs) 53y + TouT," Dy £ Vo, Vo aD M) (253

The quantity 3(kZ,) in the above equation may be written in either of two ways:

5(kZ;) = 8(nZas) = Zas On + m 0Zss
or 8(kZ,) = Z, 8k + k 82,

Note that since each term in both numerator and denominator of Eq. (253) contains
a single product of a flux and an adjoint function, the absolute normalizations of both
the flux and the adjoint are immaterial. The proper relationships must, of course, be
maintained between ¢ and ¢, and between ¢.* and ¢,”.

[}

14.2 The Neutron Lifetime

First-order, two-group perturbation theory gives the following expression for the
neutron lifetime {* in the finite reactor:

f [(1/8) $otpa™ + (1/37) 7651 dV
= reactor volume (254)

J. kyZabats® AV
core volume

where 7, is the average velocity of a typical thermal neutron and 7, is the average
velocity of a typical neutron during its lifetime as a fast neutron. The quantity Z,
is, of course, the average macroscopic absorption cross section for thermal neutrons,

14.3 Nonuniform Perturbations of a Homogeneous Bare Reactor

The spatial distributions of both the fluxes and the adjoint functions in a homo-
geneous bare reactor are given by the solutions of the wave equation
' V3¢ + B¢ =0

Solutions of the equation are given for the usual reactor shapes in Table 5. If the
solution from column 4 of that table is taken as the solution for both ¢.{r) and é.*(r),
the solutions for ¢;(r) and ¢,*(r) are simply

B:D, + =,
o) = E2E 200 (255)
7
and gt = B2 o) (256)

With these expressions for the fluxes and adjoints the effects of local or distributed
perturbations can be evaluated by Eq. (253).

14.4 Uniformly Distributed Perturbation of a Homogeneous Bare Reactor

For the case of perturbations distributed uniformly in a homogeneous bare reactor,
Eq. (253) reduces to
8kers _ 8(nZ2s) 1 82, (D;/2)B* 8%y
k,ff nZey 1+ (Du/zs)B2 Zs 1+ (DI/EI)82 Ef
(D,/Z,)B2 8D, (DI/E/)B2 5Df

N AyZ e I T T2 (257
T (bJz B D, 14 (0/2B B, O
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The expression can, of course, be obtained also by differentiation of the characteristic
equation
1225/ Zs

1 + (D/Za) B4 + (Ds/Z/)B7]

Frequently, for uniform perturbations, it is more convenient to use the expression
derived from the more usual statement of the characteristic equation:

k

kess = (258)

kerr = 1 F LB (1 + B (259)
The perturbation expression in terms of these quantities is
2R2 2 2 2RB2 2 2
Skess _ Ok L2B* 3L 7B b L*B B 3B 260)

%y, Kk 14 LB*L* 1+4+B27 N\l +LB 1+:B) Bt

The above expressions can be used to evaluate the effects of uniform changes of
core properties in reflected reactors provided these changes do not have a significant
effect on reflector savings. It is usually safe to assume that changes in k alone will
not produce important changes in reflector savings. Changes in B? will not cause
large changes in reflector savings provided the reactor is already fairly large (say
ko < 1.2 for criticality). Changes in L? or = will, in general, have important effects
on reflector savings if they are both important in determining neutron leakage. If
cither L? or r is small compared with (L? + 7), small changes in it will not have an
important effect on reflector savings.

14.6 Perturbations in Lumped Reactors

The effects of perturbations in lumped reactors can be evaluated by the methods
described in the foregoing parts of this section provided effective values for the per-
turbations over a typical cell of the reactor are used. = These effective values may be
determined by methods analogous to those described in Art. 9.

Often in lumped reactors the effects of perturbations on neutron leakage are not
important, and the effect on k.;; can be evaluated in terms of changes in & alone,
where % is expressed in terms of the four-factor formula

k = nepf

When effects on leakage are unimportant,

sp , &
i L AR 261
kerr K n+e+P+f @

The effects of the perturbation on », ¢, p, and f are determined by the methods applied
in Sec. 9.
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